Kathryn V. Tormos

Learn More
Adipocyte differentiation is characterized by an increase in mitochondrial metabolism. However, it is not known whether the increase in mitochondrial metabolism is essential for differentiation or a byproduct of the differentiation process. Here, we report that primary human mesenchymal stem cells undergoing differentiation into adipocytes display an early(More)
The key transcription factor that regulates the cellular responses to hypoxia is hypoxia inducible factor-1 (HIF-1). The signaling mechanisms that regulate the hypoxic activation of HIF-1 are not fully understood. Our objective here was to test whether AMP-activated kinase (AMPK) was an upstream regulator of HIF-1. Our results show that AMPK is not required(More)
The transcription factors hypoxia inducible factors 1 and 2 (HIF-1 and HIF-2) regulate multiple responses to physiological hypoxia such as transcription of the hormone erythropoietin to enhance red blood cell proliferation, vascular endothelial growth factor to promote angiogenesis and glycolytic enzymes to increase glycolysis. Recent studies indicate that(More)
Hypoxia-inducible factor-1 (HIF-1) plays an essential role in tumor development and progression by regulating genes that are vital for proliferation, glycolysis, angiogenesis, and metastasis. To identify strategies of targeting the HIF-1 pathway, we screened a siRNA library against the entire druggable genome and a small-molecule library consisting of(More)
Vascular cell hyperproliferation and metabolic reprogramming contribute to the pathophysiology of pulmonary arterial hypertension (PAH). An important cause of PAH in children with congenital heart disease (CHD) is increased pulmonary blood flow (PBF). To better characterize this disease course we studied early changes in pulmonary artery smooth muscle cell(More)
The Hypoxia-inducible Factor (HIF) family of transcriptional regulators coordinates the expression of dozens of genes in response to oxygen deprivation. Mammalian development occurs in a hypoxic environment and HIF-null mice therefore die in utero due to multiple embryonic and placental defects. Mouse embryonic stem cells do not differentiate into placental(More)
Hypoxia-inducible gene domain family member 1A (HIGD1A) is a survival factor induced by hypoxia-inducible factor 1 (HIF-1). HIF-1 regulates many responses to oxygen deprivation, but viable cells within hypoxic perinecrotic solid tumor regions frequently lack HIF-1α. HIGD1A is induced in these HIF-deficient extreme environments and interacts with the(More)
Cellular stress responses are frequently governed by the subcellular localization of critical effector proteins. Apoptosis-inducing Factor (AIF) or Glyceraldehyde 3-Phosphate Dehydrogenase (GAPDH), for example, can translocate from mitochondria to the nucleus, where they modulate apoptotic death pathways. Hypoxia-inducible gene domain 1A (HIGD1A) is a(More)
  • 1