Kathryn M. Armstrong

Learn More
To determine whether a charged histidine side chain affects alpha-helix stability only when histidine is close to one end of the helix or also when it is in the central region, we substitute a single histidine residue at many positions in two reference peptides and measure helix stability and histidine pKa. The position of a charged histidine residue has a(More)
alphabeta T-cell receptors (TCRs) recognize peptide antigens presented by class I or class II major histocompatibility complex molecules (pMHC). Here we review the use of thermodynamic measurements in the study of TCR-pMHC interactions, with attention to the diversity in binding thermodynamics and how this is related to the variation in TCR-pMHC interfaces.(More)
TCR (T-cell receptor) recognition of antigenic peptides bound and presented by MHC (major histocompatibility complex) molecules forms the basis of the cellular immune response to pathogens and cancer. TCRs bind peptide-MHC complexes weakly and with fast kinetics, features which have hindered detailed biophysical studies of these interactions. Modified(More)
The kinetics of thermal unfolding of apo- and holo-Chromobacterium violaceum phenylalanine hydroxylase (cPAH) was investigated using circular dichroism (CD) over the temperature range 44-76 degrees C. In addition to the native cofactor (FeII), the unfolding kinetics of holo-cPAH was characterized using ZnII and CoII as cofactors. Kinetic profiles for apo-(More)
A6 and B7 are two alphabeta T cell receptors (TCRs) that recognize the Tax peptide presented by the class I major histocompatibility molecule HLA-A2 (Tax/HLA-A2). Despite the fact that the two TCRs have different CDR loops and use different amino acid residues to contact their ligand, both receptors bind ligand with similar diagonal orientations. Here we(More)
T cell receptor (TCR) recognition of peptide takes place in the context of the major histocompatibility complex (MHC) molecule, which accounts for approximately two-thirds of the peptide/MHC buried surface. Using the class I MHC HLA-A2 and a large panel of mutants, we have previously shown that surface mutations that disrupt TCR recognition vary with the(More)
The alphabeta T cell receptor (TCR) is responsible for recognizing peptides bound and "presented" by major histocompatibility complex (MHC) molecules. We recently reported that at 25 degrees C the A6 TCR, which recognizes the Tax peptide presented by the class I MHC human leukocyte antigen-A*0201 (HLA-A2), binds with a weak DeltaH degrees , a favorable(More)
αβ T cell receptors (TCRs) recognize peptide antigens bound and presented by class I or class II major histocompatibility complex (MHC) proteins. Recognition of a peptide/MHC complex is required for initiation and propagation of a cellular immune response, as well as the development and maintenance of the T cell repertoire. Here, we discuss methods to(More)
Two models have been considered for the helix-stabilizing Phe-His+ interaction in C-peptide: (1) the H-bond model in which His+ acts as an H-bond donor and the aromatic ring of Phe acts as an acceptor, and (2) a helix dipole model, in which Phe constrains His so that there is a stronger interaction between His+ and the helix dipole. To decide between these(More)
The submillisecond closing events (flickers) and the single channel conductances to protons (g(H)) were studied in native gramicidin A (gA) and in the SS and RR diastereoisomers of dioxolane-linked gA channels in planar bilayers. Bilayers were formed from glycerylmonooleate (GMO) in various solvents. In GMO/decane (thick) bilayers, the largest flicker(More)