Learn More
Bisphenol A (BPA) is an estrogenic endocrine disruptor widely used in the production of plastics. Increasing evidence indicates that in utero BPA exposure affects sexual differentiation and behavior; however, the mechanisms underlying these effects are unknown. We hypothesized that BPA may disrupt epigenetic programming of gene expression in the brain.(More)
Developmental alterations of excitatory synapses are implicated in autism spectrum disorders (ASDs). Here, we report increased dendritic spine density with reduced developmental spine pruning in layer V pyramidal neurons in postmortem ASD temporal lobe. These spine deficits correlate with hyperactivated mTOR and impaired autophagy. In Tsc2 ± ASD mice where(More)
Early life adversity can have a significant long-term impact with implications for the emergence of psychopathology. Disruption to mother-infant interactions is a form of early life adversity that may, in particular, have profound programing effects on the developing brain. However, despite converging evidence from human and animal studies, the precise(More)
In nonprimate mammals, the dorsal cochlear nucleus (DCN) is thought to play a role in the orientation of the head toward sounds of interest by integrating acoustic and somatosensory information. Humans and higher primates might not use this system because of reported phylogenetic changes in DCN cytoarchitecture [Moskowitz N (1969) Comparative aspects of(More)
Early-life adversity can affect brain development and behavior. Emerging evidence from studies on both humans and rodents suggests that epigenetic mechanisms may play a critical role in shaping our biology in response to the quality of the environment. This article highlights the research findings suggesting that prenatal maternal stress, postnatal maternal(More)
Animal models of early-life stress and variation in social experience across the lifespan have contributed significantly to our understanding of the environmental regulation of the developing brain. Plasticity in neurobiological pathways regulating stress responsivity, cognition, and reproductive behavior is apparent during the prenatal period and continues(More)
Early-life adversity increases the risk for psychopathology in later life. The underlying mechanism(s) is unknown, but epigenetic variation represents a plausible candidate. Early-life exposures can disrupt epigenetic programming in the brain, with lasting consequences for gene expression and behavior. This evidence is primarily derived from animal studies,(More)
Prenatal exposure to polycyclic aromatic hydrocarbons (PAH) has been associated with sustained effects on the brain and behavior in offspring. However, the mechanisms have yet to be determined. We hypothesized that prenatal exposure to ambient PAH in mice would be associated with impaired neurocognition, increased anxiety, altered cortical expression of(More)
Individual differences in maternal behavior in rodents are associated with altered physiology and behavior in offspring across their lifespan and across generations. Offspring of rat dams that engage in high frequencies of high-arched-back nursing and pup-licking (High-LG) show attenuated stress responses compared to those engaging in lower frequencies(More)
—In nonprimate mammals, the dorsal cochlear nucleus (DCN) is thought to play a role in the orientation of the head toward sounds of interest by integrating acoustic and somatosensory information. Humans and higher primates might not use this system because of reported phylogenetic changes in DCN cytoarchitecture [Moskowitz N (1969) Comparative aspects of(More)
  • 1