Kathryn L VanDemark

Learn More
Astrocytes have been shown to release factors that affect various aspects of neuronal development. We have previously shown that the acetylcholine analog carbachol, by activating muscarinic M(3) receptors in rat astrocytes, increases their ability to promote neuritogenesis in hippocampal neurons. This effect was mediated by an increased expression and(More)
BACKGROUND In utero alcohol exposure can lead to fetal alcohol spectrum (FAS) disorders characterized by cognitive and behavioral deficits. In vivo and in vitro studies have shown that ethanol alters neuronal development. One mechanism through which ethanol has been shown to exert its effects is the perturbation of activated signaling cascades. The(More)
Muscarinic receptors have been proposed to play an important role during brain development by regulating cell survival, proliferation, and differentiation. This study investigated the effect of muscarinic receptor activation on prenatal rat hippocampal pyramidal neuron differentiation and the signal transduction pathways involved in this effect. The(More)
Manganese (Mn) is a known neurotoxicant and developmental neurotoxicant. As Mn has been shown to accumulate in astrocytes, we sought to investigate whether Mn would alter astrocyte-neuronal interactions, specifically the ability of astrocytes to promote differentiation of neurons. We found that exposure of rat cortical astrocytes to Mn (50-500 microM)(More)
Inhibition of astrocyte proliferation has been suggested to be an important event in the developmental neurotoxicity associated with ethanol. We have previously shown that the acetylcholine analog carbachol induces astroglial cell proliferation through activation of muscarinic M3 receptors, and that ethanol strongly inhibits this effect by inhibiting(More)
In utero alcohol exposure can lead to fetal alcohol spectrum disorders, characterized by cognitive and behavioral deficits. In vivo and in vitro studies have shown that ethanol alters neuronal development. We have recently shown that stimulation of M(3) muscarinic receptors in astrocytes increases the synthesis and release of fibronectin, laminin, and(More)
  • 1