Kathryn Jean Wicht

Learn More
Plasmodium falciparum, the most deadly agent of malaria, displays a wide variety of resistance mechanisms in the field. The ability of antimalarial compounds in development to overcome these must therefore be carefully evaluated to ensure uncompromised activity against real-life parasites. We report here on the selection and phenotypic as well as genotypic(More)
The emergence of drug resistant strains of Plasmodium spp. creates a critical need for the development of novel antimalarials. Formation of hemozoin, a crystalline heme detoxification process vital to parasite survival serves as an important drug target. The quinoline antimalarials including chloroquine and amodiaquine owe their antimalarial activity to(More)
A novel class of benzoheterocyclic analogues of amodiaquine designed to avoid toxic reactive metabolite formation was synthesized and evaluated for antiplasmodial activity against K1 (multidrug resistant) and NF54 (sensitive) strains of the malaria parasite Plasmodium falciparum. Structure-activity relationship studies led to the identification of highly(More)
We recently reported that potent N10,O11-bis-alkylamine indolo[3,2-b]quinoline antimalarials act as hemozoin (Hz) growth inhibitors. To improve access and binding to the target we have now designed novel N10,N11-di-alkylamine bioisosteres. 3-Chloro derivatives (10a-f) showed selectivity for malaria parasite compared to human cells, high activity against(More)
A large quantity of high throughput screening (HTS) data for antimalarial activity has become available in recent years. This includes both phenotypic and target-based activity. Realising the maximum value of these data remains a challenge. In this respect, methods that allow such data to be used for virtual screening maximise efficiency and reduce costs.(More)
A series of indolo[3,2-c]quinolines were synthesized by modifying the side chains of the ω-aminoalkylamines at the C6 position and introducing substituents at the C2 position, such as F, Cl, Br, Me, MeO and NO2, and a methyl group at the N11 position for an SAR study. The in vitro antiplasmodial activities of the derivative agents against two different(More)
Quinoline antimalarials target hemozoin formation causing a cytotoxic accumulation of ferriprotoporphyrin IX (Fe(III)PPIX). Well-developed SAR models exist for β-hematin inhibition, parasite activity, and cellular mechanisms for this compound class, but no comparably detailed investigations exist for other hemozoin inhibiting chemotypes. Here, benzamide(More)
This report describes the synthesis and in vitro anti-malarial evaluations of certain C2 or C8 and C11-disubstituted 6-methyl-5H-indolo[2,3-b]quinoline (neocryptolepine congener) derivatives. To attain higher activities, the structure–activity relationship (SAR) studies were conducted by varying the kind of alkylamino or ω-aminoalkylamino stubstituents at(More)
This report describes the synthesis, and in vitro and in vivo antimalarial evaluations of certain ester-modified neocryptolepine (5-methyl-5H-indolo[2,3-b]quinoline) derivatives. The modifications were carried out by introducing ester groups at the C2 and/or C9 position on the neocryptolepine core and the terminal amino group of the 3-aminopropylamine(More)
A novel series of quinoline triazole amide analogues (38-51) has been synthesized. Analogues 38-44 had a Cl substituent at the 7-position of the quinoline ring, while 45-51 had a CN substituent at this position. Compounds 40, 45 and 49 were found to be the most active in the series against the Plasmodium falciparum chloroquine-sensitive D10 strain, with(More)