Learn More
Type 2 diabetes is the epidemic of our generation, and diabetic foot ulcers (DFUs) are a major complication. Although DFU formation itself can indicate disease progression, the failure to effectively treat ulcers contributes further to a decay in patient quality of life and increased mortality. Herein we discuss the development of next-generation DFU(More)
Mesenchymal stem/stromal cells (MSC) are rapidly becoming a leading candidate for use in tissue regeneration, with first generation of therapies being approved for use in orthopaedic repair applications. Capturing the full potential of MSC will likely require the development of novel in vitro culture techniques and devices. Herein we describe the(More)
Hematopoietic stem cell (HSC) transplant is a well established curative therapy for some hematological malignancies. However, achieving adequate supply of HSC from some donor tissues can limit both its application and ultimate efficacy. The theory that this limitation could be overcome by expanding the HSC population before transplantation has motivated(More)
Nerve tissue engineering requires suitable precursor cells as well as the necessary biochemical and physical cues to guide neurite extension and tissue development. An ideal scaffold for neural regeneration would be both fibrous and electrically conductive. We have contrasted the growth and neural differentiation of mouse embryonic stem cells on three(More)
Microwell platforms are frequently described for the efficient and uniform manufacture of 3-dimensional (3D) multicellular microtissues. Multiple partial or complete medium exchanges can displace microtissues from discrete microwells, and this can result in either the loss of microtissues from culture, or microtissue amalgamation when displaced microtissues(More)
Direct bone marrow (BM) injection has been proposed as a strategy to bypass homing inefficiencies associated with intravenous (IV) hematopoietic stem cell (HSC) transplantation. Despite physical delivery into the BM cavity, many donor cells are rapidly redistributed by vascular perfusion, perhaps compromising efficacy. Anchoring donor cells to 3-dimensional(More)
Polydimethylsiloxane (PDMS) is the most commonly used material in the manufacture of customized cell culture devices. While there is concern that uncured PDMS oligomers may leach into culture medium and/or hydrophobic molecules may be absorbed into PDMS structures, there is no consensus on how or if PDMS influences cell behaviour. We observed that human(More)
Nitric oxide synthase (NOS) plays a major role in a number of key physiological and pathological processes. Knowledge of how this is regulated is important. The small acidic calcium binding protein, calmodulin (CaM), is required to fully activate the enzyme. The exact mechanism of how CaM activates NOS is not fully understood. Studies have shown CaM to act(More)
Granulocyte colony-stimulating factor (G-CSF) is routinely used in the clinic to mobilize hematopoietic stem progenitor cells (HSPC) into the patient's blood for collection and subsequent transplantation. However a significant proportion of patients who have previously received chemotherapy or radiotherapy and requiring autologous HSPC transplantation,(More)
While two-dimensional (2D) monolayers of mesenchymal stem/stromal cells (MSCs) have been shown to enhance hematopoietic stem/progenitor cell (HSPC) expansion in vitro, expanded cells do not engraft long term in human recipients. This outcome is attributed to the failure of 2D culture to recapitulate the bone marrow (BM) niche signal milieu. Herein, we(More)