Learn More
In a previous publication, an unusual UGG-reading missense suppressor caused by insertion of an extra adenylate residue in the anticodon loop of an Escherichia coli glycine tRNA was described. In this study, we provide in vivo evidence that the additional nucleotide causes an "anticodon shift" by one nucleotide in the 3' direction and that the "new"(More)
After our first observation of codon context effects in missense suppression ( Murgola & Pagel , 1983), we measured the suppression of missense mutations at two positions in trpA in Escherichia coli. The suppressible codons in the trpA messenger RNA were the lysine codons, AAA and AAG, and the glutamic acid codons, GAA and GAG. The mRNA sites of the codons(More)
RNA sites that contain unpaired or mismatched nucleotides can be interaction sites for other macromolecules. C1054, a virtually universally conserved nucleotide in the 16 S (small subunit) ribosomal RNA of Escherichia coli, is part of a highly conserved bulge in helix 34, which has been located at the decoding site of the ribosome. This helix has been(More)
We have isolated an unusual codon-specific translational suppressor in Escherichia coli. The suppressor resulted from a spontaneous mutation in a chromosomal gene during a selection for suppressors of the auxotrophic nonsense mutation trpA(UGA211). The suppressor allows readthrough of UGA mutations at two positions in trpA and at two sites in bacteriophage(More)
The base sequence around nonsense codons affects the efficiency of nonsense codon suppression. Published data, comparing different nonsense sites in a mRNA, implicate the two bases downstream of the nonsense codon as major determinants of suppression efficiency. However, the results we report here indicate that the nature of the contiguous upstream codon(More)
Beginning with a missense suppressor tRNA and a nonsense suppressor tRNA, both in Escherichia coli and each containing an extra nucleotide in the anticodon loop, we generated new suppressors in vivo by spontaneous deletion of specific nucleotides from the anticodon loop. In one experiment, the new suppressor was generated by a double mutational event, base(More)
Site-directed mutagenesis was performed on a sequence motif within the 3' major domain of Escherichia coli 16S rRNA shown previously to be important for peptide chain termination. Analysis of stop codon suppression by the various mutants showed an exclusive response to UGA stop signals, which was correlated directly with the continuity of one or the other(More)
Previous studies have demonstrated many amino acid and codon substitutions at position 211 of the alpha chain of tryptophan synthetase of Escherichia coli. In order to extend our studies on suppressor tRNAs and, in general, on accuracy in the translation of genetic information, we have devised specific selections for sense and nonsense codons corresponding(More)
This paper describes a novel mechanism for reversion of nonsense mutations in the trpA gene of Escherichia coli. This mechanism, deletion of the nonsense codon, was discovered in the course of selecting for missense revertants of trpA(UGA211) and for catalytically active tryptophan synthetase alpha chain revertants of trpA(UAA234) and trpA(UAG234). Each(More)
We report here the isolation of a mutant tRNAPhe that suppresses a double missense auxotrophic mutation in trpA of Escherichia coli, trpA218. The doubly mutant protein product differs from wild-type TrpA by the replacements of Phe22 by Leu and Gly211 by Ser. A partial revertant TrpA phenotype can be obtained from trpA218 by changing either Leu22 back to Phe(More)