Kathrine Bjørgo

Learn More
BACKGROUND Huntington's disease (HD) is a rare triplet repeat (CAG) disorder. Advanced, multi-centre, multi-national research frameworks are needed to study simultaneously multiple complementary aspects of HD. This includes the natural history of HD, its management and the collection of clinical information and biosamples for research. METHODS We report(More)
Mutations in ANKRD11 have recently been reported to cause KBG syndrome, an autosomal dominant condition characterized by intellectual disability (ID), behavioral problems, and macrodontia. To understand the pathogenic mechanism that relates ANKRD11 mutations with the phenotype of KBG syndrome, we studied the cellular characteristics of wild-type ANKRD11 and(More)
Mutations in the Forkhead box G1 (FOXG1) gene, a brain specific transcriptional factor, are responsible for the congenital variant of Rett syndrome. Until now FOXG1 point mutations have been reported in 12 Rett patients. Recently seven additional patients have been reported with a quite homogeneous severe phenotype designated as the FOXG1 syndrome. Here we(More)
Several candidate modifier genes which, in addition to the pathogenic CAG repeat expansion, influence the age at onset (AO) in Huntington disease (HD) have already been described. The aim of this study was to replicate association of variations in the N-methyl D-aspartate receptor subtype genes GRIN2A and GRIN2B in the "REGISTRY" cohort from the European(More)
Case Report A 55-year-old man of Pakistani descent experienced low back pain and paresis of the left leg without pareses in trunk or arm Dear Sir, We report the first case of familial amyotrophic lateral sclerosis (FALS) caused by H46R SOD1 mutation in a patient of Pakistani descent. H46R SOD1 mutations are associated with a characteristic clinical(More)
Patients with PEX3 mutations usually present with a severe form of Zellweger spectrum disorder with death in the first year of life. Whole exome sequencing in adult siblings with intellectual disability revealed a homozygous variant in PEX3 that abolishes the normal splice site. A cryptic acceptor splice site is activated and an in-frame transcript with a(More)
BACKGROUND Persistent pulmonary hypertension is a well-known disease of the newborn that in most cases responds well to treatment with nitric oxide and treatment of any underlying causes. Genetic causes of persistent pulmonary hypertension of the newborn are rare. The TWIST1 gene is involved in morphogenetics, and deletions are known to cause(More)
  • 1