Kathrin Witmer

Learn More
The heterochromatic environment and physical clustering of chromosome ends at the nuclear periphery provide a functional and structural framework for antigenic variation and evolution of subtelomeric virulence gene families in the malaria parasite Plasmodium falciparum. While recent studies assigned important roles for reversible histone modifications,(More)
The post-genomic era of malaria research provided unprecedented insights into the biology of Plasmodium parasites. Due to the large evolutionary distance to model eukaryotes, however, we lack a profound understanding of many processes in Plasmodium biology. One example is the cell nucleus, which controls the parasite genome in a development- and cell(More)
Plasmodium falciparum is responsible for the most severe form of malaria in humans. Antigenic variation of P. falciparum erythrocyte membrane protein 1 leads to immune evasion and occurs through switches in mutually exclusive var gene transcription. The recent progress in Plasmodium epigenetics notwithstanding, the mechanisms by which singularity of var(More)
The Plasmodium falciparum genome is equipped with several subtelomeric gene families that are implicated in parasite virulence and immune evasion. Members of these families are uniformly positioned within heterochromatic domains and are thus subject to variegated expression. The best-studied example is that of the var family encoding the major parasite(More)
Clonally variant protein expression in the malaria parasite Plasmodium falciparum generates phenotypic variability and allows isogenic populations to adapt to environmental changes encountered during blood stage infection. The underlying regulatory mechanisms are best studied for the major virulence factor P. falciparum erythrocyte membrane protein 1(More)
  • 1