Learn More
OBJECTIVE Type 2 diabetes is characterized by impaired insulin secretion in response to increased metabolic demand. This defect in beta-cell compensation seems to result from the interplay between environmental factors and genetic predisposition. Genome-wide association studies reveal that common variants in transcription factor 7-like 2 (TCF7L2) are(More)
In type 2 diabetes, chronic hyperglycemia is suggested to be detrimental to pancreatic beta cells, causing impaired insulin secretion. IL-1beta is a proinflammatory cytokine acting during the autoimmune process of type 1 diabetes. IL-1beta inhibits beta cell function and promotes Fas-triggered apoptosis in part by activating the transcription factor(More)
In type 1 and type 2 diabetes (T1/T2DM), beta cell destruction by apoptosis results in decreased beta cell mass and progression of the disease. In this study, we found that the interferon gamma-inducible protein 10 plays an important role in triggering beta cell destruction. Islets isolated from patients with T2DM secreted CXCL10 and contained 33.5-fold(More)
In autoimmune type 1 diabetes, Fas-to-Fas-ligand (FasL) interaction may represent one of the essential pro-apoptotic pathways leading to a loss of pancreatic beta-cells. In the advanced stages of type 2 diabetes, a decline in beta-cell mass is also observed, but its mechanism is not known. Human islets normally express FasL but not the Fas receptor. We(More)
Loss of beta-cell mass and function raises a concern regarding the application of sulfonylureas for the treatment of type 2 diabetes because previous studies have shown that agents that cause closure of inwardly rectifying K(+) sulfonylurea receptor subtype of ATP-sensitive potassium channels, such as tolbutamide and glibenclamide, induce apoptosis in(More)
Several studies support the concept of a diabetic cardiomyopathy in the absence of discernible coronary artery disease, although its mechanism remains poorly understood. We investigated the role of glucose and palmitic acid on cardiomyocyte apoptosis and on the organization of the contractile apparatus. Exposure of adult rat cardiomyocytes for 18 h to(More)
Subclinical inflammation is a recently discovered phenomenon in type 2 diabetes. Elevated cytokines impair beta-cell function and survival. A recent clinical trial shows that blocking IL-1beta signaling by IL-1 receptor antagonist (IL-1Ra) improves beta-cell secretory function in patients with type 2 diabetes. In the present study, we provide further(More)
High concentrations of glucose induce beta cell production of IL-1beta, leading to impaired beta cell function and apoptosis in human pancreatic islets. IL-1 receptor antagonist (IL-1Ra) is a naturally occurring antagonist of IL-1beta and protects cultured human islets from glucotoxicity. Therefore, the balance of IL-1beta and IL-1Ra may play a crucial role(More)
Type 2 diabetes manifests when the β-cell fails to secrete sufficient amounts of insulin to maintain normoglycemia and undergoes apoptosis. The disease progression results from an interplay of environmental factors and genetic predisposition. Polymorphisms in T-cell factor 7-like 2 (TCF7L2) strongly correlate with type 2 diabetes mellitus (T2DM). While(More)