Kathrin Friedemann

  • Citations Per Year
Learn More
Solution-, melt-, and co-axial electrospinning are well-known methods for producing nano- and microfibers. The electrospinning of colloids (or colloid-electrospinning) is a new field that offers the possibility to elaborate multicompartment nanomaterials. However, the presence of colloids in the electrospinning feed further complicates theoretical(More)
UNLABELLED The enzyme-triggered release of the antimicrobial agent octenidine out of poly(l-lactide)-based nanoparticles (PLLA-NPs) and their in vitro antibacterial activities in the presence of gram-positive and gram-negative bacteria are presented. The formation of the nanoparticles was achieved using a combination of the solvent evaporation and the(More)
A model system for multicompartment nanofibers was fabricated by colloid electrospinning. The obtained nanostructured material consisted of fluorescent polymer nanoparticles that were synthesized in a miniemulsion and then embedded in fluorescently labeled polymer nanofibers. Because of the absence of contrast between both polymers, the immobilized(More)
Nanofibers composed of silica nanoparticles, used as structural building blocks, and polystyrene nanoparticles introduced as sacrificial material are fabricated by bicolloidal electrospinning. During fiber calcination, sacrificial particles are combusted leaving voids with controlled average sizes. The mechanical properties of the sintered silica fibers(More)
A new top-down approach is proposed to form large amounts of anisometric particles. Multicompartment fibers that present different domains composed of silica nanoparticles and larger polystyrene nanoparticles are fabricated by colloid-electrospinning and are subsequently calcinated and broken. The obtained fibers containing voids are subsequently cut via(More)
  • 1