Learn More
It is a commonly held view that numbers are represented in an abstract way in both parietal lobes. This view is based on failures to find differences between various notational representations. Here we show that by using relatively smaller voxels together with an adaptation paradigm and analyzing subjects on an individual basis it is possible to detect(More)
People suffering from developmental dyscalculia encounter difficulties in automatically accessing numerical magnitudes [1-3]. For example, when instructed to attend to the physical size of a number while ignoring its numerical value, dyscalculic subjects, unlike healthy participants, fail to process the irrelevant dimension automatically and subsequently(More)
Whether the human brain is equipped with a special neural substrate for numbers, or rather with a common neural substrate for processing of several types of magnitudes, has been the topic of a long-standing debate. The present study addressed this question by using functional magnetic resonance imaging (fMRI) and event-related potentials (ERPs) together(More)
The neuronal correlate of a rare explicit bidirectional synesthesia was investigated with numerical and physical size comparison tasks using both functional magnetic resonance imaging and event-related potentials. Interestingly, although participant I.S. exhibited similar congruity effects for both tasks at the behavioral level, subsequent analyses of the(More)
Recent developmental functional magnetic resonance imaging studies provide evidence that the cortical specialization for face perception observed in adults emerges only gradually over the first decade of childhood. These developmental results provide a middle-ground view on the long-standing debate in the literature from adults about the specificity or(More)
Face processing in the human brain recruits a widespread cortical network based mainly in the ventral and lateral temporal and occipital lobes. However, the extent to which activity within this network is driven by different face properties versus being determined by the manner in which faces are processed (as determined by task requirements) remains(More)
We used the combination of functional magnetic resonance imaging and event-related potentials to decompose the processing stages (mental chronometry) of working memory retrieval. Our results reveal an early transient activation of inferotemporal cortex, which was accompanied by the onset of a sustained activation of posterior parietal cortex. We furthermore(More)
This opinion paper suggests that developmental neuroimaging studies investigating emerging cortical networks for specific cognitive functions can contribute substantially to our understanding of mature brain organisation. Based on a review of the literature on the neural correlates of face processing abilities, this paper shows how developmental(More)
Faces are complex social stimuli, which can be processed both at the categorical and the individual level. Behavioral studies have shown that children take more than a decade of exposure and training to become proficient at processing faces at the individual level. The neurodevelopmental trajectories for different aspects of face-processing are still poorly(More)
Previous studies showed that the processing of numerical information and spatial information such as physical size causes a mutual interference. The neuronal correlate of such interference was suggested to be in the parietal lobe. However, a previous study showed that such interference does not occur between numerical information and nonspatial dimensions(More)