Learn More
BACKGROUND Accurate quantitative co-localization is a key parameter in the context of understanding the spatial co-ordination of molecules and therefore their function in cells. Existing co-localization algorithms consider either the presence of co-occurring pixels or correlations of intensity in regions of interest. Depending on the image source, and the(More)
Bioluminescent imaging (BLI) is a non-invasive imaging modality widely used in the field of pre-clinical oncology research. Imaging of small animal tumour models using BLI involves the generation of light by luciferase-expressing cells in the animal following administration of substrate. This light may be imaged using an external detector. The technique(More)
INTRODUCTION The use of image-derived arterial input functions (IDAIF) for the dynamic quantification of bone metabolism using 18F-fluoride positron emission tomography 18F-PET is an attractive alternative to direct arterial blood sampling. PURPOSES (a) To validate a method for obtaining the IDAIF by imaging the femoral artery against a method for(More)
UNLABELLED (18)F-Fluoride PET allows noninvasive evaluation of regional bone metabolism and has the potential to become a useful tool for assessing patients with metabolic bone disease and evaluating novel drugs being developed for these diseases. The main PET parameter of interest, termed K(i), reflects regional bone metabolism. The aim of this study was(More)
AIM The aim of this study was to evaluate the relationship between different quantification methods used for the measurement of bone plasma clearance (K(i)) using F-PET at the hip and lumbar spine. METHODS Twelve healthy postmenopausal women aged 52-71 years were recruited. Each participant underwent 60-min dynamic F-PET scans at the lumbar spine and hip(More)
The in-vivo mechanical response of neural tissue during impact loading of the head is simulated using geometrically accurate finite element (FE) head models. However, current FE models do not account for the anisotropic elastic material behaviour of brain tissue. In soft biological tissue, there is a correlation between internal microscopic structure and(More)
OBJECTIVES (i) To validate two new image-based methods for finding the plasma arterial input function (AIF) and evaluate the performance of these and two similar techniques against arterial sampling. (ii) To evaluate the performance of all four image-derived AIF (IDAIF) methods against arterial sampling for measuring the F plasma clearance (Ki) to the(More)
The localization of proteins to specific subcellular structures in eukaryotic cells provides important information with respect to their function. Fluorescence microscopy approaches to determine localization distribution have proved to be an essential tool in the characterization of unknown proteins, and are now particularly pertinent as a result of the(More)
The purpose of this paper is to register ex-vivo cardiac diffusion tensor images using affine transformations and the preservation of the principal direction reorientation strategy. We have successfully registered cardiac DTI and compared five different similarity measures: relative anisotropy difference, modulus difference, tensor difference, normalized(More)
UNLABELLED The assessment of regional skeletal metabolism using (18)F-fluoride PET ((18)F-PET) requires segmentation of the tissue region of interest (ROI). The aim of this study was to validate a novel approach to define multiple ROIs at the proximal femur similar to those used in dual x-ray absorptiometry. Regions were first drawn on low-dose CT images(More)