Kathleen H. Burns

Learn More
Upon fertilization, remodeling of condensed maternal and paternal gamete DNA occurs to form the diploid genome. In Xenopus laevis, nucleoplasmin 2 (NPM2) decondenses sperm DNA in vitro. To study chromatin remodeling in vivo, we isolated mammalian NPM2 orthologs. Mouse NPM2 accumulates in oocyte nuclei and persists in preimplantation embryos. Npm2 knockout(More)
Nuage are amorphous ultrastructural granules in the cytoplasm of male germ cells as divergent as Drosophila, Xenopus, and Homo sapiens. Most nuage are cytoplasmic ribonucleoprotein structures implicated in diverse RNA metabolism including the regulation of PIWI-interacting RNA (piRNA) synthesis by the PIWI family (i.e., MILI, MIWI2, and MIWI). MILI is(More)
The production of functional female gametes is essential for the propagation of all vertebrate species. The growth of oocytes within ovarian follicles and their development to mature eggs have fascinated biologists for centuries, and scientists have long realized the importance of the ovarian follicle's somatic cells in nurturing oogenesis and delivering(More)
Global silencing of transcriptional activity in the oocyte genome occurs just before the resumption of meiosis and is a crucial developmental transition at the culmination of oogenesis. Transcriptionally quiescent oocytes rely on stored maternal transcripts to sustain the completion of meiosis, fertilization, and early embryonic cleavage stages. Thus, the(More)
Transposons are DNA sequences capable of moving in genomes. Early evidence showed their accumulation in many species and suggested their continued activity in at least isolated organisms. In the past decade, with the development of various genomic technologies, it has become abundantly clear that ongoing activity is the rule rather than the exception.(More)
LINE-1s are active human DNA parasites that are agents of genome dynamics in evolution and disease. These streamlined elements require host factors to complete their life cycles, whereas hosts have developed mechanisms to combat retrotransposition's mutagenic effects. As such, endogenous L1 expression levels are extremely low, creating a roadblock for(More)
Chromatin remodeling is a major event that occurs during mammalian spermiogenesis, the process of spermatid maturation into spermatozoa. Nuclear condensation during spermiogenesis is accomplished by replacing somatic histones (linker histone H1 and core histones) and the testis-specific linker histone, H1t, with transition proteins and protamines. It has(More)
Zona pellucida binding protein 1 (ZPBP1), a spermatid and spermatozoon protein that localizes to the acrosome, was originally identified in pigs and named for its binding to the oocyte zona pellucida. In an in silico search for germ cell-specific genes, Zpbp1 and its novel paralog, Zpbp2, were discovered and confirmed to be expressed only in the testes in(More)
Mobile DNAs have had a central role in shaping our genome. More than half of our DNA is comprised of interspersed repeats resulting from replicative copy and paste events of retrotransposons. Although most are fixed, incapable of templating new copies, there are important exceptions to retrotransposon quiescence. De novo insertions cause genetic diseases(More)
Characterizing structural variants in the human genome is of great importance, but a genome wide analysis to detect interspersed repeats has not been done. Thus, the degree to which mobile DNAs contribute to genetic diversity, heritable disease, and oncogenesis remains speculative. We perform transposon insertion profiling by microarray (TIP-chip) to map(More)