Kathi Gundermann

Learn More
Two different fucoxanthin-chlorophyll protein complexes (FCP) were purified from the centric diatom Cyclotella meneghiniana and characterized with regard to their polypeptide and pigment composition. Whereas the oligomeric FCPb complex is most probably composed of fcp5 gene products, the trimeric FCPa has subunits encoded by fcp1-3 and fcp6/7. The amount of(More)
Fucoxanthin-chlorophyll complexes (FCP) from the centric diatom Cyclotella meneghiniana were isolated and the trimeric FCPa complex was reconstituted into liposomes at different lipid to Chl a ratios. The fluorescence yield of the complexes in different environments was calculated from room temperature fluorescence emission spectra and compared to the(More)
The fluorescence yield of isolated fucoxanthin chlorophyll proteins, serving as light harvesting proteins in diatoms, was compared to the amount of diatoxanthin bound. Diatoxanthin was earlier shown to be involved in the xanthophyll cycle in diatoms as a functional analogue of zeaxanthin in higher plants. By growing cells under different light conditions,(More)
The ultrafast carotenoid to chlorophyll a energy transfer dynamics of the isolated fucoxanthin-chlorophyll proteins FCPa and FCPb from the diatom Cyclotella meneghiniana was investigated in a comprehensive study using transient absorption in the visible and near infrared spectral region as well as static fluorescence spectroscopy. The altered(More)
Diatoms are major contributors to the photosynthetic productivity of marine phytoplankton. In these organisms, fucoxanthin-chlorophyll proteins (FCPs) serve as light-harvesting proteins. We have explored the FCP complexes in Phaeodactylum tricornutum under low light (LL) and high light (HL) conditions. Sub-fractionating the pool of major FCPs yielded(More)
In this study, we demonstrate the selective in vivo detection of diadinoxanthin (DD) and diatoxanthin (DT) in intact Cyclotella cells using resonance Raman spectroscopy. In these cells, we were able to assess both the content of DD and DT carotenoids relative to chlorophyll and their conformation. In addition, the sensitivity and selectivity of the(More)
Photosynthetic organisms have developed vital strategies which allow them to switch from a light-harvesting to an energy dissipative state at the level of the antenna system in order to survive the detrimental effects of excess light illumination. These mechanisms are particularly relevant in diatoms, which grow in highly fluctuating light environments and(More)
  • 1