Learn More
DNA non-homologous end joining (NHEJ) and homologous recombination (HR) function to repair DNA double-strand breaks (DSBs) in G2 phase with HR preferentially repairing heterochromatin-associated DSBs (HC-DSBs). Here, we examine the regulation of repair pathway usage at two-ended DSBs in G2. We identify the speed of DSB repair as a major component(More)
The gene product of XRCC4 has been implicated in both V(D)J recombination and the more general process of double strand break repair (DSBR). To date its role in these processes is unknown. Here, we describe biochemical characteristics of the murine XRCC4 protein. XRCC4 expressed in insect cells exists primarily as a disulfide-linked homodimer, although it(More)
DNA DSBs (double-strand breaks) are considered the most cytotoxic type of DNA lesion. They can be introduced by external sources such as IR (ionizing radiation), by chemotherapeutic drugs such as topoisomerase poisons and by normal biological processes such as V(D)J recombination. If left unrepaired, DSBs can cause cell death. If misrepaired, DSBs may lead(More)
Two highly conserved double-strand break (DSB) repair pathways, homologous recombination (HR) and nonhomologous end joining (NHEJ), function in all eukaryotes. How a cell chooses which pathway to utilize is an area of active research and debate. During NHEJ, the DNA-dependent protein kinase (DNA-PK) functions as a "gatekeeper" regulating DNA end access.(More)
The DNA-dependent protein kinase (DNA-PK) is central to the process of nonhomologous end joining because it recognizes and then binds double strand breaks initiating repair. It has long been appreciated that DNA-PK protects DNA ends to promote end joining. Here we review recent work from our laboratories and others demonstrating that DNA-PK can regulate end(More)
DNA double strand breaks (DSBs), induced by ionizing radiation (IR) and endogenous stress including replication failure, are the most cytotoxic form of DNA damage. In human cells, most IR-induced DSBs are repaired by the nonhomologous end joining (NHEJ) pathway. One of the most critical steps in NHEJ is ligation of DNA ends by DNA ligase IV (LIG4), which(More)
Unrepaired DNA double-strand breaks can lead to apoptosis or tumorigenesis. In mammals double-strand breaks are repaired mainly by nonhomologous end-joining mediated by the DNA-PK complex. The core protein of this complex, DNA-PKcs, is a DNA-dependent serine/threonine kinase that phosphorylates protein targets as well as itself. Although the(More)
DNA double-strand breaks are extremely harmful lesions that can lead to genomic instability and cell death if not properly repaired. There are at least three pathways that are responsible for repairing DNA double-strand breaks in mammalian cells: non-homologous end joining, homologous recombination and alternative non-homologous end joining. Here we review(More)
The DNA-dependent protein kinase (DNA-PK) plays an essential role in nonhomologous DNA end joining (NHEJ) by initially recognizing and binding to DNA breaks. We have shown that in vitro, purified DNA-PK undergoes autophosphorylation, resulting in loss of activity and disassembly of the kinase complex. Thus, we have suggested that autophosphorylation of the(More)
The mechanisms by which cells accurately distinguish between DNA double-strand break (DSB) ends and telomeric DNA ends remain poorly defined. Recent investigations have revealed intriguing interactions between DNA repair and telomeres. We were the first to report a requirement for the nonhomologous end-joining (NHEJ) protein DNA-dependent protein kinase(More)