Katherine Rennie

Learn More
OBJECTIVES Defects of the mitochondrial genome (mtDNA) cause a series of rare, mainly neurological disorders. In addition, they have been implicated in more common forms of movement disorders, dementia and the ageing process. In order to try to model neuronal dysfunction associated with mitochondrial disease, we have attempted to establish a series of(More)
Na(+) currents were studied by whole cell patch clamp of chalice-shaped afferent terminals attached to type I hair cells isolated from the gerbil semicircular canal and utricle. Outward K(+) currents were blocked with intracellular Cs(+) or with extracellularly applied 20 microM linopirdine and 2.5 mM 4-aminopyridine (4-AP). With K(+) currents blocked,(More)
Linopirdine and XE991, selective blockers of K(+) channels belonging to the KCNQ family, were applied to hair cells isolated from gerbil vestibular system and to hair cells in slices of pigeon crista. In type II hair cells, both compounds inhibited a slowly activating, slowly inactivating component of the macroscopic current recruited at potentials above(More)
Calyx afferent terminals engulf the basolateral region of type I vestibular hair cells, and synaptic transmission across the vestibular type I hair cell/calyx is not well understood. Calyces express several ionic conductances, which may shape postsynaptic potentials. These include previously described tetrodotoxin-sensitive inward Na(+) currents,(More)
We developed a rodent crista slice to investigate regional variations in electrophysiological properties of vestibular afferent terminals. Thin transverse slices of the gerbil crista ampullaris were made and electrical properties of calyx terminals in central zones (CZ) and peripheral zones (PZ) compared with whole cell patch clamp. Spontaneous action(More)
Ionic currents have been recorded under whole cell patch clamp in cells isolated from the guinea-pig vestibular system. Type I and type II cells were separately identified. Type II cells were further classified as short (less than 15 microns in length) or tall (greater than 15 microns). Under whole cell voltage clamp, cells showed an outward current which(More)
1. Type I vestibular hair cells were isolated from the cristae ampullares of the semicircular canals of the Mongolian gerbil (Meriones unguiculatus) and the white king pigeon (Columba livia). Dissociated type I cells were distinguished from type II hair cells by their neck to plate ratio (NPR) and their characteristic amphora shape. 2. The membrane(More)
Classically, type I and type II vestibular hair cells have been defined by their afferent innervation patterns. Little quantitative information exists on the intrinsic morphometric differences between hair cell types. Data presented here define a quantitative method for distinguishing hair cell types based on the morphometric properties of the hair cell's(More)
1. Membrane potential responses of dissociated gerbil type I semicircular canal hair cells to current injections in whole cell current-clamp have been measured. The input resistance of type I cells was 21.4 +/- 14.3 (SD) M omega, (n = 25). Around the zero-current potential (Vz = -66.6 +/- 9.3 mV, n = 25), pulsed current injections (from approximately -200(More)
Hair cells were dissociated from the semicircular canal, utricle, lagena and saccule of white king pigeons. Type I hair cells were identified morphologically based on the ratios of neck width to cuticular plate width (NPR < 0.72) as well as neck width to cell body width (NBR < 0.64). The perforated patch variant of the whole-cell recording technique was(More)