Katherine M. Schmalzer

Learn More
Pseudomonas aeruginosa is a Gram-negative opportunistic pathogen that utilizes a type III secretion system to subvert host innate immunity. Of the 4 known effector proteins injected into eukaryotic cells, ExoS and ExoU are cytotoxic. The cytotoxic phenotype of ExoU depends on the enzymatic activity of the patatin-like phospholipase A(2) domain localized to(More)
Pseudomonas aeruginosa is an opportunistic Gram-negative pathogen that possesses a type III secretion system (T3SS) critical for evading innate immunity and establishing acute infections in compromised patients. Our research has focused on the structure-activity relationships of ExoU, the most toxic and destructive type III effector produced by P.(More)
ExoU is a 74-kDa, water-soluble toxin injected directly into mammalian cells through the type III secretion system of the opportunistic pathogen, Pseudomonas aeruginosa. Previous studies have shown that ExoU is a Ca(2+)-independent phospholipase that requires a eukaryotic protein cofactor. One protein capable of activating ExoU and serving as a required(More)
We tested the hypothesis that Pseudomonas aeruginosa type 3 secretion system effectors exoenzymes Y and U (ExoY and ExoU) induce release of a high-molecular-weight endothelial tau, causing transmissible cell injury characteristic of an infectious proteinopathy. Both the bacterial delivery of ExoY and ExoU and the conditional expression of an(More)
BACKGROUND Pseudomonas aeruginosa is an opportunistic pathogen that causes disease in immunocompromised individuals, burn victims, and cystic fibrosis patients. Strains that secrete ExoU induce host cell lysis and damage epithelial tissue, which can lead to severe outcomes including sepsis and mortality. ExoU is classified as an A2 phospholipase (PLA(2))(More)
K. Adam Morrow, Cristhiaan D. Ochoa, Ron Balczon, Chun Zhou, Laura Cauthen, 6 Mikhail Alexeyev, Katherine M. Schmalzer, Dara W. Frank, and Troy Stevens 7 8 Departments of Physiology and Cell Biology, Biochemistry and Molecular Biology, and 9 Medicine, Center for Lung Biology, University of South Alabama, Mobile AL 36688; Physician10 Scientist Training(More)
  • 1