Learn More
We have devised a genetic screen, termed synthetic dosage lethality, in which a cloned "reference" gene is inducibly overexpressed in a set of mutant strains carrying potential "target" mutations. To test the specificity of the method, two reference genes, CTF13, encoding a centromere binding protein, and ORC6, encoding a subunit of the origin of(More)
A genetic synthetic dosage lethality (SDL) screen using CTF13 encoding a known kinetochore protein as the overexpressed reference gene identified two chromosome transmission fidelity (ctf) mutants, YCTF58 and YCTF26. These mutant strains carry independent alleles of a novel gene, which we have designated CTF19. In light of its potential role in kinetochore(More)
The budding yeast kinetochore is composed of an inner and outer protein complex, which binds to centromere (CEN) DNA and attaches to microtubules. We performed a genetic synthetic dosage lethality screen to identify novel kinetochore proteins in a collection of chromosome transmission fidelity mutants. Our screen identified several new kinetochore-related(More)
We have used the human leukemia cell line K562 as a model to study the role of c-myc in differentiation and apoptosis. We have generated stable transfectants of K562 constitutively expressing two c-Myc inhibitory mutants: D106-143, that carries a deletion in the transactivation domain of the protein, and In373, that carries an insertion in the(More)
OBJECTIVE To develop guidelines as to which asymptomatic male patients with genital human papillomavirus (HPV) infection need further evaluation of the urethra, we studied two screening methods: urethroscopy and voided urethral cytology. METHODS In a four-year period, 135 asymptomatic men underwent complete screening for HPV infection. They were evaluated(More)
The flat, hooked-shaped architecture of the hamster sperm nucleus makes this an excellent model for in situ hybridization studies of the three dimensional structure of the genome. We have examined the structure of the telomere repeat sequence (TTAGGG)n with respect to the various nuclear structures present in hamster spermatozoa, using fluorescent in situ(More)
The completion of the genome sequence of the budding yeast Saccharomyces cerevisiae marks the dawn of an exciting new era in eukaryotic biology that will bring with it a new understanding of yeast, other model organisms, and human beings. This body of sequence data benefits yeast researchers by obviating the need for piecemeal sequencing of genes, and(More)
  • 1