Katherine L. Friedman

Learn More
The Saccharomyces cerevisiae Pif1 helicase is the prototypical member of the Pif1 DNA helicase family, which is conserved from bacteria to humans. Here we show that exceptionally potent G-quadruplex unwinding is conserved among Pif1 helicases. Moreover, Pif1 helicases from organisms separated by more than 3 billion years of evolution suppressed DNA damage(More)
Simian virus 40 (SV40) and cellular DNA replication rely on host ATM and ATR DNA damage signaling kinases to facilitate DNA repair and elicit cell cycle arrest following DNA damage. During SV40 DNA replication, ATM kinase activity prevents concatemerization of the viral genome whereas ATR activity prevents accumulation of aberrant genomes resulting from(More)
Telomerase is a reverse transcriptase that maintains chromosome ends. The N-terminal half of the catalytic protein subunit (TERT) contains three functional domains (I, II, and III) that are conserved among TERTs but not found in other reverse transcriptases. Guided by an amino acid sequence alignment of nine TERT proteins, mutations were introduced into(More)
Telomeres, protein-DNA complexes at the ends of eukaryotic linear chromosomes, are essential for genome stability. The accumulation of chromosomal abnormalities in the absence of proper telomere function is implicated in human aging and cancer. Repetitive telomeric sequences are maintained by telomerase, a ribonucleoprotein (RNP) complex containing a(More)
Centromere positions on 7 maize chromosomes were compared on the basis of data from 4 to 6 mapping techniques per chromosome. Centromere positions were first located relative to molecular markers by means of radiation hybrid lines and centric fission lines recovered from oat-maize chromosome addition lines. These centromere positions were then compared with(More)
Telomerase is a multi-subunit enzyme that reverse transcribes telomere repeats onto the ends of linear eukaryotic chromosomes and is therefore critical for genome stability. S. cerevisiae telomerase activity is cell-cycle regulated; telomeres are not elongated during G1 phase. Previous work has shown that Est1 protein levels are low during G1 phase,(More)
Simian virus 40 (SV40) serves as an important model organism for studying eukaryotic DNA replication. Its helicase, Large T-antigen (Tag), is a multi-functional protein that interacts with multiple host proteins, including the ubiquitous ssDNA binding protein Replication Protein A (RPA). Tag recruits RPA, actively loads it onto the unwound DNA, and together(More)
ACKNOWLEDGEMENTS There are many people who helped with the work presented in this document, and with my personal and professional growth. First, I'd like to thank my mentor and Ph.D. advisor, Ellen Fanning. She has always pushed me to be the best scientist that I could become, and served as an excellent role model of an outstanding scholar. I'd also like to(More)
  • 1