Katherine Fishwick

Learn More
The events that convert adherent epithelial cells into individual migratory cells that can invade the extracellular matrix are known collectively as epithelial-mesenchymal transition (EMT). Throughout evolution, the capacity of cells to switch between these two cellular states has been fundamental in the generation of complex body patterns. Here, we review(More)
The transcription factor SOX2 is widely known to play a critical role in the central nervous system; however, its role in peripheral neurogenesis remains poorly understood. We recently developed an hESC-based model in which migratory cells undergo epithelial to mesenchymal transition (EMT) to acquire properties of neural crest (NC) cells. In this model, we(More)
Endometrial stem-like cells, including mesenchymal stem cells (MSCs) and epithelial progenitor cells, are essential for cyclic regeneration of the endometrium following menstrual shedding. Emerging evidence indicates that endometrial MSCs (eMSCs) constitute a dynamic population of cells that enables the endometrium to adapt in response to a failed(More)
  • 1