Learn More
The schizophrenia brain is differentiated from the normal brain by subtle changes, with significant overlap in measures between normal and disease states. For the past 25 years, schizophrenia has increasingly been considered a neurodevelopmental disorder. This frame of reference challenges biological researchers to consider how pathological changes(More)
Adolescence is a developmental period of complex neurobiological change and heightened vulnerability to psychiatric illness. As a result, understanding factors such as sex and stress hormones which drive brain changes in adolescence, and how these factors may influence key neurotransmitter systems implicated in psychiatric illness, is paramount. In this(More)
New neurons are continuously produced in the subgranular zone of the adult hippocampus and can modulate hippocampal plasticity across life. Adolescence is characterized by dramatic changes in sex hormone levels, and social and emotional behaviors. It is also an age for increased risk of psychiatric disorders, including schizophrenia, which may involve(More)
Postnatal neurogenesis occurs in the subventricular zone and dentate gyrus, and evidence suggests that new neurons may be present in additional regions of the mature primate brain, including the prefrontal cortex (PFC). Addition of new neurons to the PFC implies local generation of neurons or migration from areas such as the subventricular zone. We examined(More)
OBJECTIVE The molecular and cellular basis of structural and functional abnormalities of the hippocampus found in schizophrenia is currently unclear. Postnatal neurogenesis contributes to hippocampal function in animal models and is correlated with hippocampal volume in primates. Reduced hippocampal cell proliferation has been previously reported in(More)
Cognitive deficits are prevalent in schizophrenia, and these deficits represent a disabling aspect of the illness for which there are no current effective treatments. Recent work has shown that sex hormone levels correlate with brain activity and cognitive abilities differentially in patients with schizophrenia relative to healthy control groups. There is(More)
Testosterone attenuates postnatal hippocampal neurogenesis in adolescent male rhesus macaques through altering neuronal survival. While brain-derived neurotropic factor (BDNF)/ tyrosine kinase receptor B (TrkB) are critical in regulating neuronal survival, it is not known if the molecular mechanism underlying testosterone’s action on postnatal neurogenesis(More)