Learn More
The role of bone marrow (BM)-derived precursor cells in tumor angiogenesis is not known. We demonstrate here that tumor angiogenesis is associated with recruitment of hematopoietic and circulating endothelial precursor cells (CEPs). We used the angiogenic defective, tumor resistant Id-mutant mice to show that transplantation of wild-type BM or vascular(More)
Human endothelial cells (EC) assemble plasmin-generating proteins on their surface. We have previously identified an EC membrane protein (Mr approximately 40,000) which specifically binds tissue plasminogen activator (t-PA) but not urokinase (Hajjar, K.A., and Hamel, N. M. (1990) J. Biol. Chem. 265, 2908-2916). In the present study, t-PA receptor protein(More)
We previously demonstrated that when platelets are in motion and in proximity to endothelial cells, they become unresponsive to agonists (Marcus, A.J., L.B. Safier, K.A. Hajjar, H.L. Ullman, N. Islam, M.J. Broekman, and A.M. Eiroa. 1991. J. Clin. Invest. 88:1690-1696). This inhibition is due to an ecto-ADPase on the surface of endothelial cells which(More)
The molecular mechanisms that finely co-ordinate fibrin formation and fibrinolysis are now well defined. The structure and function of all major fibrinolytic proteins, which include serine proteases, their inhibitors, activators and receptors, have been characterized. Measurements of real time, dynamic molecular interactions during fibrinolysis of whole(More)
Endothelial cells are known to release the two major forms of plasminogen activator, tissue plasminogen activator (TPA) and urokinase. We have previously demonstrated that plasminogen (PLG) immobilized on various surfaces forms a substrate for efficient conversion to plasmin by TPA (Silverstein, R. L., Nachman, R. L., Leung, L. L. K., and Harpel, P. C.(More)
Optimal fibrin balance requires precisely controlled plasmin generation on the surface of endothelial cells, which line the blood vessel wall. As a co-receptor for plasminogen and tissue plasminogen activator (tPA), which are key factors in plasmin generation, the annexin A2 (A2) complex promotes vascular fibrinolysis. The intracellular A2 complex is a(More)
Cultured human endothelial cells synthesize and secrete two types of plasminogen activator, tissue plasminogen activator (t-PA) and urokinase (u-PA). Previous work from this laboratory (Hajjar, K.A., Hamel, N. M., Harpel, P. C., and Nachman, R. L. (1987) J. Clin. Invest. 80, 1712-1719) has demonstrated dose-dependent, saturable, and high affinity binding of(More)
Cell surface receptors may play a significant role in the regulation of plasmin generation. Although structurally diverse, these receptors can be classified on a functional basis into two groups. Activation receptors for plasminogen and plasminogen activators serve to localize, and in some cases, potentiate plasminogen activation, and are expressed on(More)
Fibrinolytic activity has been reported to be decreased in atherosclerosis. Recently, annexin II was identified as a coreceptor on endothelial cells for plasminogen and tissue plasminogen activator. In this study, we examined whether recombinant annexin II (rAN II) protein can modulate fibrinolytic activity on vascular endothelium in vitro and in vivo. The(More)
BACKGROUND AND PURPOSE Cerebral venous thrombosis (CVT) may be a manifestation of underlying autoimmune disease. Antibodies against annexin A2 (anti-A2Ab) coincide with antiphospholipid syndrome, in which antiphospholipid antibodies (aPLA) are associated with thrombosis in any vascular bed. Annexin A2, a profibrinolytic receptor and binding site for(More)