Katharina M. Fromm

Learn More
Varying the polyethyleneglycol spacer between two (iso)-nicotinic groups of the ligand systems, a large structural variety of silver coordination compounds was obtained, starting with zero-dimensional ring systems, via one-dimensional chains, helices and double-helices to two-dimensional polycatenanes. Theoretical calculations help to understand their(More)
In the copper(II) complex, bis-{(E)-1-[(2,4,6-tri-bromo-phen-yl)diazen-yl]naph-thalen-2-olato}copper(II), [Cu(C16H8Br3N2O)2], (I), the metal cation is coord-inated by two N atoms and two O atoms from two bidentate (E)-1-[(2,4,6-tri-bromo-phen-yl)diazen-yl]naphthalen-2-olate ligands, forming a slightly distorted square-planar environment. In one of the(More)
Polyether ether ketone (PEEK) is a well-known polymer used for implants and devices, especially spinal ones. To overcome the biomaterial related infection risks, 4-4 1-difluorobenzophenone, the famous PEEK monomer, was modified in order to introduce binding sites for silver ions, which are well known for their antimicrobial activity. The complexation of(More)
The title compound, C13H12F3NO3, is almost planar if one excludes the F atoms of the -CF3 group [maximum deviation for the other hetero atoms = 0.069 (1) Å], and the dihedral angle between the pyrrole and benzene ring of the indole system is 2.54 (8)°. In the crystal, mol-ecules are linked by N-H⋯O hydrogen bonds, forming chains propagating along the a-axis(More)
Biofilm formation on implant materials causes a common problem: resistance to aggressive pharmacological agents as well as host defenses. Therefore, to reduce bacterial adhesion to implant surfaces we propose to use silver(I) coordination networks as it is known that silver is the most powerful antimicrobial inorganic agent. As a model surface,(More)
  • 1