Learn More
The obligate intracellular bacterium Chlamydia trachomatis possesses a biphasic developmental cycle that is manifested by differentiation of infectious, metabolically inert elementary bodies (EBs) to larger, metabolically active reticulate bodies (RBs). The cycle is completed by asynchronous differentiation of dividing RBs back to a population of dormant(More)
The major outer membrane protein (MOMP) of Chlamydia trachomatis serovariants is known to be an immunodominant surface antigen. Moreover, it is known that the C. trachomatis MOMP elicits antibodies that recognize both linear and conformational antigenic determinants. In contrast, it has been reported that the MOMP of Chlamydia pneumoniae is not surface(More)
Chlamydia spp. are among the many pathogenic Gram-negative bacteria that employ a type III secretion system (T3SS) to overcome host defenses and exploit available resources. Significant progress has been made in elucidating contributions of T3S to the pathogenesis of these medically important, obligate intracellular parasites, yet important questions(More)
Chlamydia pneumoniae is a common respiratory pathogen that has been associated with a variety of chronic diseases including asthma and atherosclerosis. Chlamydiae are obligate intracellular parasites that primarily infect epithelial cells where they develop within a membrane-bound vacuole, termed an inclusion. Interactions between the microorganism and(More)
UNLABELLED Although progress in Chlamydia genetics has been rapid, genomic modification has previously been limited to point mutations and group II intron insertions which truncate protein products. The bacterium has thus far been intractable to gene deletion or more-complex genomic integrations such as allelic exchange. Herein, we present a novel suicide(More)
Chlamydia pneumoniae is a common human respiratory pathogen that has been associated with a variety of chronic diseases, including atherosclerosis. The role of this organism in the pathogenesis of atherosclerosis remains unknown. A key question is how C. pneumoniae is transferred from the site of primary infection to a developing atherosclerotic plaque. It(More)
Endothelial nitric oxide synthase (eNOS) generated NO plays a crucial physiological role in the regulation of vascular tone. eNOS is a constitutively expressed synthase whose enzymatic function is regulated by dual acylation, phosphorylation, protein-protein interaction and subcellular localization. In endothelial cells, the enzyme is primarily localized to(More)
As obligate intracellular parasites, Chlamydia spp. must create and maintain a specialized intracellular niche while simultaneously contending with potent host defenses. Discoveries that chlamydiae deploy an array of anti-host proteins have placed new emphasis on deciphering the impact of host cell biology on chlamydial development and virulence. Recent(More)
Inherited factor VII (FVII) deficiency is a rare autosomal recessive disorder. Mutations and polymorphisms of the FVII gene were characterized in more than 40 unrelated patients with FVII deficiency. Among the 29 different mutations, the most frequent were Ala294 Val, Ala294Val;404delC, IVS7+7, and Val281 Phe. Four novel mutations (IVS2+1G>C, Arg247 Cys,(More)
Chlamydia pneumoniae is an obligate intracellular parasite with a developmental cycle believed to be common to all members of the genus Chlamydia. We present a detailed description based on transmission and scanning electron microscopy of temporal events and inclusion structures throughout the C. pneumoniae AR-39 developmental cycle.