Katerina K. Naka

Learn More
A fuzzy rule-based decision support system (DSS) is presented for the diagnosis of coronary artery disease (CAD). The system is automatically generated from an initial annotated dataset, using a four stage methodology: 1) induction of a decision tree from the data; 2) extraction of a set of rules from the decision tree, in disjunctive normal form and(More)
In this work, we present a platform for the development of multiscale patient-specific artery and atherogenesis models. The platform, called ARTool, integrates technologies of 3-D image reconstruction from various image modalities, blood flow and biological models of mass transfer, plaque characterization, and plaque growth. Patient images are acquired for(More)
BACKGROUND Type 2 diabetes mellitus (T2DM) is independently associated with an increased risk for cardiovascular diseases that is primarily due to the early development of advanced atherosclerotic vascular changes. The aim of our study was to investigate the predictors of vascular dysfunction in T2DM patients. METHODS We studied 165 T2DM patients without(More)
This paper introduces an automated methodology for the extraction of fetal heart rate from cutaneous potential abdominal electrocardiogram (abdECG) recordings. A three-stage methodology is proposed. Having the initial recording, which consists of a small number of abdECG leads in the first stage, the maternal R-peaks and fiducial points (QRS onset and(More)
Intravascular ultrasound (IVUS) virtual histology (VH-IVUS) is a new technique, which provides automated plaque characterization in IVUS frames, using the ultrasound backscattered RF-signals. However, its computation can only be performed once per cardiac cycle (ECG-gated technique), which significantly decreases the number of characterized IVUS frames.(More)
Intravascular ultrasound (IVUS) is an invasive modality which provides cross-sectional images of a coronary artery. In these images both the lumen and outer vessel wall can be identified and accurate estimations of their dimensions and of the plaque burden can be obtained. In addition, further processing of the IVUS backscatter signal helps in the(More)
Progression of atherosclerotic process constitutes a serious and quite common condition due to accumulation of fatty materials in the arterial wall, consequently posing serious cardiovascular complications. In this paper, we assemble and analyze a multitude of heterogeneous data in order to model the progression of atherosclerosis (ATS) in coronary vessels.(More)
A three-stage method for fetal heart rate extraction, from abdominal ECG recordings, is proposed. In the first stage the maternal R-peaks and fiducial points (QRS onset and offset) are detected, using time-frequency analysis, and the maternal QRS complexes are eliminated. The second stage locates the positions of the candidate fetal R-peaks, using complex(More)
A framework for the inflation of micro-CT and histology data using intravascular ultrasound (IVUS) images, is presented. The proposed methodology consists of three steps. In the first step the micro-CT/histological images are manually co-registered with IVUS by experts using fiducial points as landmarks. In the second step the lumen of both the(More)
Imaging systems transmit and acquire signals and are subject to errors including: error sources, signal variations or possible calibration errors. These errors are included in all imaging systems for atherosclerosis and are propagated to methodologies implemented for the segmentation and characterization of atherosclerotic plaque. In this paper, we present(More)