Katerina Asdre

Learn More
We consider a variant of the path cover problem, namely, the k-fixed-endpoint path cover problem, or kPC for short, on interval graphs. Given a graph G and a subset $\mathcal{T}$ of k vertices of V(G), a k-fixed-endpoint path cover of G with respect to $\mathcal{T}$ is a set of vertex-disjoint paths ℘ that covers the vertices of G such that the k vertices(More)
Extending previous NP-completeness results for the harmonious coloring problem and the pair-complete coloring problem on trees, bipartite graphs and cographs, we prove that these problems are also NP-complete on connected bipartite permutation graphs. We also study the k-path partition problem and, motivated by a recent work of Steiner [G. Steiner, On the(More)
In this paper, we prove that the harmonious coloring problem is NP-complete for connected interval and permutation graphs. Given a simple graph G, a harmonious coloring of G is a proper vertex coloring such that each pair of colors appears together on at most one edge. The harmonious chromatic number is the least integer k for which G admits a harmonious(More)
We study a variant of the path cover problem, namely, the k-fixed-endpoint path cover problem, or kPC for short. Given a graph G and a subset T of k vertices of V (G), a k-fixed-endpoint path cover of G with respect to T is a set of vertex-disjoint paths P that covers the vertices of G such that the k vertices of T are all endpoints of the paths in P. The(More)
In this paper,we study a variant of thepath cover problem, namely, the k -fixed-endpoint path cover problem. Given a graph G and a subset T of k vertices of V (G), a k fixed-endpoint path cover of G with respect to T is a set of vertex-disjoint paths P that covers the vertices of G such that the k vertices ofT are all endpoints of the paths inP . The k(More)
Nakano et al. in [20] presented a timeand work-optimal algorithm for finding the smallest number of vertex-disjoint paths that cover the vertices of a cograph and left open the problem of applying their technique into other classes of graphs. Motivated by this issue we generalize their technique and apply it to the class of P4-sparse graphs, which forms a(More)
We consider a variant of the path cover problem, namely, the k-fixed-endpoint path cover problem, or kPC for short, on interval graphs. Given a graph G and a subset T of k vertices of V (G), a k-fixed-endpoint path cover of G with respect to T is a set of vertex-disjoint paths P that covers the vertices of G such that the k vertices of T are all endpoints(More)
This paper describes efficient data structures, namely the <i>Indexed P-tree, Block P-tree, and Indexed-Block P-tree</i> (or <i>IP</i>-tree, <i>BP</i>-tree, and <i>IBP</i>-tree, respectively, for short), for maintaining future events in a general purpose discrete event simulation system, and studies the performance of their event set algorithms under the(More)
This paper describes efficient data structures, namely the Indexed P-tree, Block P-tree, and Indexed-Block P-tree (or IP-tree, BP-tree, and IBP-tree, respectively, for short), for maintaining future events in a general purpose discrete event simulation system, and studies the performance of their event set algorithms under the event horizon principle. For(More)
  • 1