Learn More
Prevention of epileptogenesis after brain trauma is an unmet medical challenge. Recent molecular profiling studies have provided an insight into molecular changes that contribute to formation of ictogenic neuronal networks, including genes regulating synaptic or neuronal plasticity, cell death, proliferation, and inflammatory or immune responses. These(More)
The present study was designed to elucidate the distribution, time-course and mechanism(s) of status epilepticus-induced neuronal damage in the rat amygdaloid complex. Status epilepticus was induced with kainate (9 mg/kg, i.p.), and the behavioral and electrographic seizure activity of each rat was monitored via cortical electrodes attached to a continuous(More)
Symptomatic temporal lobe epilepsy typically develops in three phases: brain insult --> latency period (epileptogenesis) --> recurrent seizures (epilepsy). We hypothesized that remodeling of neuronal circuits underlying epilepsy is associated with altered gene expression during epileptogenesis. Epileptogenesis was induced by electrically triggered status(More)
The present study was designed to address the question of whether recurrent spontaneous seizures cause progressive neuronal damage in the brain. Epileptogenesis was triggered by status epilepticus (SE) induced by electrically stimulating the amygdala in rat. Spontaneous seizures were continuously monitored by video-EEG for up to 6 months. The progression of(More)
It is in dispute whether caspase 3 contributes to status epilepticus (SE)-induced cell loss. We hypothesized that caspase 3-mediated cell death continues beyond the acute phase of SE. We induced SE with either kainic acid or electrical stimulation of the amygdala in Wistar and Sprague-Dawley rats. Caspase 3 immunohistochemistry, Western blot analysis and(More)
Reduced hippocampal GABAergic inhibition is acknowledged to be associated with epilepsy. However, there are no studies that had quantitatively compared the loss of various interneuron populations in different models of epilepsy. We tested a hypothesis that the more severe the loss of hippocampal interneurons, the more severe was the epilepsy.(More)
DNA microarrays are now popular tools for large-scale studies of gene expression in the brain in both physiologic and pathologic conditions. Here, we review the few available papers describing the use of microarrays in experiments relevant to temporal lobe epilepsy. Review of the data indicates that products of genes regulated during epileptic processes(More)
Epileptogenesis refers to a process in which an initial brain-damaging insult triggers a cascade of molecular and cellular changes that eventually lead to the occurrence of spontaneous seizures. Cellular alterations include neurodegeneration, neurogenesis, axonal sprouting, axonal injury, dendritic remodeling, gliosis, invasion of inflammatory cells,(More)
Status epilepticus (StE) in immature rats causes long-term functional impairment. Whether this is associated with structural alterations remains controversial. The present study was designed to test the hypothesis that StE at an early age results in neuronal loss. StE was induced with lithium-pilocarpine in 12-d-old rats, and the presence of neuronal damage(More)
The main goal of this study was to identify common features in the molecular response to epileptogenic stimuli across different animal models of epileptogenesis. Therefore, we compared the currently available literature on the global analysis of gene expression following epileptogenic insult to search for (i) highly represented functional gene classes (GO(More)