Katarina Surla

  • Citations Per Year
Learn More
The singularly perturbed parabolic boundary value problem is considered. Difference scheme is obtained by using cubic spline difference scheme on Shishkin’s mesh in space and classical discretization on uniform mesh in time. To obtain better stability and simpler matrix the fitting factor in polynomial form is used. The uniform convergence is achieved.(More)
We consider a spline difference scheme on a piecewise uniform Shishkin mesh for a singularly perturbed boundary value problem with two parameters. We show that the discrete minimum principle holds for a suitably chosen collocation points. Furthermore, bounds on the discrete counterparts of the layer functions are given. Numerical results indicate uniform(More)
The linear singularly perturbed reaction-diffusion problem is considered. The spline difference scheme on the Shishkin mesh is used to solve the problem numerically. With the special position of collocation points, the obtained scheme satisfies the discrete minimum principle. Numerical experiments which confirm theoretical results are presented. AMS(More)
A semilinear singularly perturbed reaction-diffusion problem is considered and the approximate solution is given in the form of a quadratic polynomial spline. Using the collocation method on a simple piecewise equidistant mesh, an approximation almost second order uniformly accurate in small parameter is obtained. Numerical results are presented in support(More)
  • 1