Katalin Ajtai

Learn More
beta-cardiac myosin subfragment 1 (betaS1) tertiary structure and dynamics were characterized with proteolytic digestion, nucleotide analogue trapping kinetics, and intrinsic fluorescence changes accompanying nucleotide binding. Proteolysis of betaS1 produces the 25, 50, and 20 kDa fragments and a new cut within the 50-kDa fragment at Arg369. F-actin(More)
Cardiac and skeletal muscle myosins have the central role in contraction transducing ATP free energy into the mechanical work of moving actin. Myosin has a motor domain containing ATP and actin binding sites and a lever-arm that undergoes rotation impelling bound actin. The lever-arm converts torque generated in the motor into the linear displacement known(More)
Myosin powers contraction in heart and skeletal muscle and is a leading target for mutations implicated in inheritable muscle diseases. During contraction, myosin transduces ATP free energy into the work of muscle shortening against resisting force. Muscle shortening involves relative sliding of myosin and actin filaments. Skeletal actin filaments were(More)
Myosin cross-bridge subfragment 1 (S1) is the ATP catalyzing motor protein in muscle. It consists of three domains that catalyze ATP and bind actin (catalytic), conduct energy transduction (converter), and transport the load (lever arm). Force development during contraction is thought to result from rotary lever arm movement with the cross-bridge attached(More)
The labeling of muscle fiber proteins with iodoacetamido)tetramethylrhodamine (IATR) was reinvestigated with the purified 5' or 6' isomers of IATR. Both isomers modify the myosin heavy chain within the 20-kDa fragment of myosin subfragment 1 (S1) but with different rates, and only the 5'-IATR alters K(+)-EDTA- and Ca(2+)-activated ATPases. Absorption(More)
Myosin in muscle transduces ATP free energy into the mechanical work of moving actin. It has a motor domain transducer containing ATP and actin binding sites, and, mechanical elements coupling motor impulse to the myosin filament backbone providing transduction/mechanical-coupling. The mechanical coupler is a lever-arm stabilized by bound essential and(More)
Confocal microscopy is widely used for acquiring high spatial resolution tissue sample images of interesting fluorescent molecules inside cells. The fluorescent molecules are often tagged proteins participating in a biological function. The high spatial resolution of confocal microscopy compared to wide field imaging comes from an ability to optically(More)
Fluorescence detection of single molecules provides a means to investigate protein dynamics minus ambiguities introduced by ensemble averages of unsynchronized protein movement or of protein movement mimicking a local symmetry. For proteins in a biological assembly, taking advantage of the single molecule approach could require single protein isolation from(More)
Myosin 2 is the molecular motor in muscle. It binds actin and executes a power stroke by rotating its lever arm through an angle of approximately 70 degrees to translate actin against resistive force. Myosin 2 has evolved to function optimally under crowded conditions where rates and equilibria of macromolecular reactions undergo major shifts relative to(More)
The absorption, fluorescence emission, and excitation fluorescence anisotropy spectra of a rhodamine dye in a water-glycerol solution at high concentration were investigated to determine spectroscopic properties of the ground state dimer. The combination of data from these spectra measured at several dye concentrations contained sufficient constraints on(More)