Learn More
NetMHC-3.0 is trained on a large number of quantitative peptide data using both affinity data from the Immune Epitope Database and Analysis Resource (IEDB) and elution data from SYFPEITHI. The method generates high-accuracy predictions of major histocompatibility complex (MHC): peptide binding. The predictions are based on artificial neural networks trained(More)
BACKGROUND Binding of peptides to Major Histocompatibility Complex (MHC) molecules is the single most selective step in the recognition of pathogens by the cellular immune system. The human MHC class I system (HLA-I) is extremely polymorphic. The number of registered HLA-I molecules has now surpassed 1500. Characterizing the specificity of each separately(More)
Recognition of peptides bound to major histocompatibility complex (MHC) class I molecules by T lymphocytes is an essential part of immune surveillance. Each MHC allele has a characteristic peptide binding preference, which can be captured in prediction algorithms, allowing for the rapid scan of entire pathogen proteomes for peptide likely to bind MHC. Here(More)
MOTIVATION Prediction of which peptides will bind a specific major histocompatibility complex (MHC) constitutes an important step in identifying potential T-cell epitopes suitable as vaccine candidates. MHC class II binding peptides have a broad length distribution complicating such predictions. Thus, identifying the correct alignment is a crucial part of(More)
BACKGROUND Reliable predictions of Cytotoxic T lymphocyte (CTL) epitopes are essential for rational vaccine design. Most importantly, they can minimize the experimental effort needed to identify epitopes. NetCTL is a web-based tool designed for predicting human CTL epitopes in any given protein. It does so by integrating predictions of proteasomal cleavage,(More)
Major histocompatibility complex (MHC) proteins are encoded by extremely polymorphic genes and play a crucial role in immunity. However, not all genetically different MHC molecules are functionally different. Sette and Sidney (1999) have defined nine HLA class I supertypes and showed that with only nine main functional binding specificities it is possible(More)
BACKGROUND Cytotoxic T Lymphocytes (CTL) recognize complexes of peptide ligands and Major Histocompatibility Complex (MHC) class I molecules presented at the surface of Antigen Presenting Cells (APC). Detection and isolation of CTL's are of importance for research on CTL immunity, and development of vaccines and adoptive immune therapy. Peptide-MHC(More)
BACKGROUND Molecules of the class II major histocompability complex (MHC-II) specifically bind and present exogenously derived peptide epitopes to CD4+ T helper cells. The extreme polymorphism of the MHC-II hampers the complete analysis of peptide binding. It is also a significant hurdle in the generation of MHC-II molecules as reagents to study and(More)
Strategies for selecting informative data points for training prediction algorithms are important, particularly when data points are difficult and costly to obtain. A Query by Committee (QBC) training strategy for selecting new data points uses the disagreement between a committee of different algorithms to suggest new data points, which most rationally(More)
Epitopes from all available full-length sequences of yellow fever virus (YFV) and dengue fever virus (DENV) restricted by Human Leukocyte Antigen class I (HLA-I) alleles covering 12 HLA-I supertypes were predicted using the NetCTL algorithm. A subset of 179 predicted YFV and 158 predicted DENV epitopes were selected using the EpiSelect algorithm to allow(More)