Learn More
In this paper we describe an improved neural network method to predict T-cell class I epitopes. A novel input representation has been developed consisting of a combination of sparse encoding, Blosum encoding, and input derived from hidden Markov models. We demonstrate that the combination of several neural networks derived using different sequence-encoding(More)
BACKGROUND Binding of peptides to Major Histocompatibility Complex (MHC) molecules is the single most selective step in the recognition of pathogens by the cellular immune system. The human MHC class I system (HLA-I) is extremely polymorphic. The number of registered HLA-I molecules has now surpassed 1500. Characterizing the specificity of each separately(More)
NetMHC-3.0 is trained on a large number of quantitative peptide data using both affinity data from the Immune Epitope Database and Analysis Resource (IEDB) and elution data from SYFPEITHI. The method generates high-accuracy predictions of major histocompatibility complex (MHC): peptide binding. The predictions are based on artificial neural networks trained(More)
Recognition of peptides bound to major histocompatibility complex (MHC) class I molecules by T lymphocytes is an essential part of immune surveillance. Each MHC allele has a characteristic peptide binding preference, which can be captured in prediction algorithms, allowing for the rapid scan of entire pathogen proteomes for peptide likely to bind MHC. Here(More)
MOTIVATION Prediction of which peptides will bind a specific major histocompatibility complex (MHC) constitutes an important step in identifying potential T-cell epitopes suitable as vaccine candidates. MHC class II binding peptides have a broad length distribution complicating such predictions. Thus, identifying the correct alignment is a crucial part of(More)
Although cytotoxic T lymphocytes (CTLs) in people infected with human immunodeficiency virus type 1 can potentially target multiple virus epitopes, the same few are recognized repeatedly. We show here that CTL immunodominance in regions of the human immunodeficiency virus type 1 group-associated antigen proteins p17 and p24 correlated with epitope(More)
BACKGROUND Reliable predictions of Cytotoxic T lymphocyte (CTL) epitopes are essential for rational vaccine design. Most importantly, they can minimize the experimental effort needed to identify epitopes. NetCTL is a web-based tool designed for predicting human CTL epitopes in any given protein. It does so by integrating predictions of proteasomal cleavage,(More)
Major histocompatibility complex (MHC) proteins are encoded by extremely polymorphic genes and play a crucial role in immunity. However, not all genetically different MHC molecules are functionally different. Sette and Sidney (1999) have defined nine HLA class I supertypes and showed that with only nine main functional binding specificities it is possible(More)
Reverse immunogenetic approaches attempt to optimize the selection of candidate epitopes, and thus minimize the experimental effort needed to identify new epitopes. When predicting cytotoxic T cell epitopes, the main focus has been on the highly specific MHC class I binding event. Methods have also been developed for predicting the antigen-processing steps(More)
BACKGROUND Cytotoxic T Lymphocytes (CTL) recognize complexes of peptide ligands and Major Histocompatibility Complex (MHC) class I molecules presented at the surface of Antigen Presenting Cells (APC). Detection and isolation of CTL's are of importance for research on CTL immunity, and development of vaccines and adoptive immune therapy. Peptide-MHC(More)