Learn More
Data and knowledge management systems employ feature selection algorithms for removing irrelevant, redundant, and noisy information from the data. There are two well-known approaches to feature selection, feature ranking (FR) and feature subset selection (FSS). In this paper, we propose a new FR algorithm, termed as class-dependent density-based feature(More)
A Boolean network is a graphical model for representing and analyzing the behavior of gene regulatory networks (GRN). In this context, the accurate and efficient reconstruction of a Boolean network is essential for understanding the gene regulation mechanism and the complex relations that exist therein. In this paper we introduce an elegant and efficient(More)
In machine learning, feature ranking (FR) algorithms are used to rank features by relevance to the class variable. FR algorithms are mostly investigated for the feature selection problem and less studied for the problem of ranking. This paper focuses on the latter. A question asked about the problem of ranking given in the terminology of FR is: as different(More)
  • 1