Learn More
In the mature nervous system, changes in synaptic strength correlate with changes in neuronal structure. Members of the Nogo-66 receptor family have been implicated in regulating neuronal morphology. Nogo-66 receptor 1 (NgR1) supports binding of the myelin inhibitors Nogo-A, MAG (myelin-associated glycoprotein), and OMgp (oligodendrocyte myelin(More)
Parkinson's disease (PD) is the most common neurodegenerative movement disorder afflicting >500,000 patients in the United States alone. This age-related progressive disorder is typified by invariant loss of dopaminergic substantia nigra neurons (DAN), dystrophic neurites, the presence of alpha-synuclein (SYN) positive intracytoplasmic inclusions (Lewy(More)
Following injury to the adult mammalian central nervous system, regenerative growth of severed axons is very limited. The lack of neuronal repair is often associated with significant functional deficits, and depending on the severity of injury, may result in permanent paralysis distal to the site of injury. A detailed understanding of the molecular(More)
The Nogo-66 receptor (NgR1) is a promiscuous receptor for the myelin inhibitory proteins Nogo/Nogo-66, myelin-associated glycoprotein (MAG), and oligodendrocyte myelin glycoprotein (OMgp). NgR1, an axonal glycoprotein, is the founding member of a protein family composed of the structurally related molecules NgR1, NgR2, and NgR3. Here we show that NgR2 is a(More)
Neuronal Nogo66 receptor-1 (NgR1) binds the myelin inhibitors NogoA, OMgp, and myelin-associated glycoprotein (MAG) and has been proposed to function as the ligand-binding component of a receptor complex that also includes Lingo-1, p75(NTR), or TROY. In this study, we use Vibrio cholerae neuraminidase (VCN) and mouse genetics to probe the molecular(More)
  • 1