Learn More
In the mature nervous system, changes in synaptic strength correlate with changes in neuronal structure. Members of the Nogo-66 receptor family have been implicated in regulating neuronal morphology. Nogo-66 receptor 1 (NgR1) supports binding of the myelin inhibitors Nogo-A, MAG (myelin-associated glycoprotein), and OMgp (oligodendrocyte myelin(More)
Parkinson's disease (PD) is the most common neurodegenerative movement disorder afflicting >500,000 patients in the United States alone. This age-related progressive disorder is typified by invariant loss of dopaminergic substantia nigra neurons (DAN), dystrophic neurites, the presence of alpha-synuclein (SYN) positive intracytoplasmic inclusions (Lewy(More)
The Nogo-66 receptor (NgR1) is a promiscuous receptor for the myelin inhibitory proteins Nogo/Nogo-66, myelin-associated glycoprotein (MAG), and oligodendrocyte myelin glycoprotein (OMgp). NgR1, an axonal glycoprotein, is the founding member of a protein family composed of the structurally related molecules NgR1, NgR2, and NgR3. Here we show that NgR2 is a(More)
Myelin-associated glycoprotein (MAG) is a sialic acid-binding Ig-family lectin that functions in neuronal growth inhibition and stabilization of axon-glia interactions. The ectodomain of MAG is comprised of five Ig-like domains and uses neuronal cell-type-specific mechanisms to signal growth inhibition. We show that the first three Ig-like domains of MAG(More)
Following injury to the adult mammalian central nervous system, regenerative growth of severed axons is very limited. The lack of neuronal repair is often associated with significant functional deficits, and depending on the severity of injury, may result in permanent paralysis distal to the site of injury. A detailed understanding of the molecular(More)
Neuronal Nogo66 receptor-1 (NgR1) binds the myelin inhibitors NogoA, OMgp, and myelin-associated glycoprotein (MAG) and has been proposed to function as the ligand-binding component of a receptor complex that also includes Lingo-1, p75(NTR), or TROY. In this study, we use Vibrio cholerae neuraminidase (VCN) and mouse genetics to probe the molecular(More)
Coordinated flight in winged insects requires rhythmic activity of the underlying neural circuit. Here, we show that Drosophila mutants for the inositol 1,4,5-trisphosphate (InsP(3)) receptor gene (itpr) are flightless. Electrophysiological recordings from thoracic indirect flight muscles show increased spontaneous firing accompanied by a loss of rhythmic(More)
Signaling by the second messenger inositol 1,4,5-trisphosphate is thought to affect several developmental and physiological processes. Mutants in the inositol 1,4,5-trisphosphate receptor (itpr) gene of Drosophila exhibit delays in molting while stronger alleles are also larval lethal. In a freshly generated set of EMS alleles for the itpr locus we have(More)
NgR1, NgR2, and NgR3 which constitute the Nogo-66 receptor family are primarily expressed by neurons in the central nervous system (CNS) and believed to limit axonal growth and sprouting following CNS injury. In an attempt to define the expression and decipher the function of individual members of the Nogo-66 receptor family, we previously reported the(More)
  • 1