Karthik Raveendran

Learn More
We present a new algorithm for enforcing incompressibility for Smoothed Particle Hydrodynamics (SPH) by preserving uniform density across the domain. We propose a hybrid method that uses a Poisson solve on a coarse grid to enforce a divergence free velocity field, followed by a local density correction of the particles. This avoids typical grid artifacts(More)
We present an approach for artist-directed animation of liquids using multiple levels of control over the simulation, ranging from the overall tracking of desired shapes to highly detailed secondary effects such as dripping streams, separating sheets of fluid, surface waves and ripples. The first portion of our technique is a volume preserving morph that(More)
Interactive media not only should enhance human-to-human communication, but also human-to-animal communication. We promote a new type of media interaction allowing human users to interact and play with their small pets (like hamsters) remotely via Internet through a mixed-reality-based game system " Metazoa Ludens ". To examine the systems effectiveness:(More)
We present a method for smoothly blending between existing liquid animations. We introduce a semi-automatic method for matching two existing liquid animations, which we use to create new fluid motion that plausibly interpolates the input. Our contributions include a new space-time non-rigid iterative closest point algorithm that incorporates user guidance,(More)
  • 1