Learn More
The neurotrophic and neuroprotective activity of fibroblast growth factor (FGF2) is well documented. In this study, we attempted to demonstrate that binding of ATP to FGF2 is essential for its neuroprotective effect. Incubation of primary cultures of rat embryonic (E18) cortical neurons with alkaline phosphatase decreased the ATP concentration in the(More)
The proto-oncogene B-cell lymphoma protein 2 (BCL-2) and its homologues are important modulators of cellular survival after transient brain ischaemia. In the present study we used western blotting to elucidate if the stimulation of 5-hydroxytryptamine 1A type receptors with their agonist BAY X 3702 results in regulation of BCL-2 family proteins. Treatment(More)
Basic fibroblast growth factor (bFGF) is a heparin-binding growth factor known to cause cell proliferation, angiogenesis and neuroprotection. We have performed site-directed mutagenesis to identify the amino acids that are essential for heparin/growth factor interaction and for neuroprotection. Binding to heparin-acrylic beads was markedly reduced when(More)
BACKGROUND ATP binding is essential for the bioactivity of several growth factors including nerve growth factor, fibroblast growth factor-2 and brain-derived neurotrophic factor. Vascular endothelial growth factor isoform 165 (VEGF-A(165)) induces the proliferation of human umbilical vein endothelial cells, however a dependence on ATP-binding is currently(More)
About 22,000 1-methyl-3-nitro-1-nitrosoguanidine- and UV-induced mutants of the rubber-degrading bacterium Streptomyces sp. strain K30 were characterized for the ability to produce clear zones on natural rubber latex overlay agar plates. Thirty-five mutants were defective solely in cleavage of rubber and were phenotypically complemented with the wild-type(More)
Growth factors and their mechanisms of action have been studied extensively. However, it remained widely unrecognized that binding of ATP to growth factors is a prerequisite for their bioactivity. Here we demonstrated the binding of ATP to nerve growth factor (NGF) as well as its relevance for neuroprotection. By using mass spectrometry-based methodology we(More)
In previous work, we have demonstrated by radiolabeling, mass spectrometry and site-directed mutagenesis that nerve growth factor (NGF) as well as brain-derived neurotrophic factor (BDNF) and fibroblast growth factor 2 (FGF2) are capable of ATP-binding and that this binding appears to be essential for their neuroprotective activity. In this study, we(More)
BACKGROUND Fibroblast growth factor 2, a well-characterized heparin-binding growth factor, is involved in many biological processes like embryogenesis, cell proliferation and angiogenesis. However, this growth factor is very unstable and shows rapid degradation in aqueous solution. Beside the well-known stabilization of FGF2 by heparin or heparan sulphate,(More)
We have shown previously that nerve growth factor (NGF) requires only low nanomolar ATP concentrations in the cell culture medium to protect cortical rat neurons (CRN) from cellular damage induced by staurosporine (STS). We have also demonstrated before that NGF and other growth factors form stable non-covalent complexes with ATP. Here we demonstrated that(More)