Learn More
Salmonella enterica, the cause of food poisoning and typhoid fever, induces actin cytoskeleton rearrangements and membrane ruffling to gain access into nonphagocytic cells, where it can replicate and avoid innate immune defenses. Here, we found that SopB, a phosphoinositide phosphatase that is delivered into host cells by a type III secretion system, was(More)
Many bacterial pathogens and symbionts utilize type III secretion systems to deliver bacterial effector proteins into host cells. These effector proteins have the capacity to modulate a large variety of cellular functions in a highly regulated manner. Here, we report that the phosphoinositide phosphatase SopB, a Salmonella Typhimurium type III secreted(More)
The facultative intracellular pathogen Salmonella enterica triggers programmed cell death in macrophages. The close examination of this phenomenon has revealed an unusually complex picture involving diverse mechanisms that lead to different types of programmed cell death. It appears that the outcome of the interaction of salmonella with macrophages depends(More)
Intracellular pathogens and other organisms have evolved mechanisms to exploit host cells for their life cycles. Virulence genes of some intracellular bacteria responsible for these mechanisms are located in pathogenicity islands, such as secretion systems that secrete effector proteins. The Francisella pathogenicity island is required for phagosomal(More)
Endurance exercise relies on transsarcolemmal flux of substrates in order to avoid depletion of intramuscular reserves. Previous studies of endurance trained sled dogs have shown a remarkable capacity of these dogs to adapt rapidly to endurance exercise by decreasing the utilization of intramuscular reserves. The current study tested the hypothesis that the(More)
  • 1