Learn More
Cardiomyocytes (CMs) derived from induced pluripotent stem cells (iPSCs) hold great promise for patient-specific disease modeling, drug screening and cell therapy. However, existing protocols for CM differentiation of iPSCs besides being highly dependent on the application of expensive growth factors show low reproducibility and scalability. The aim of this(More)
Cardiomyocytes (CMs) derived from induced pluripotent stem cells (iPS-CMs) are promising candidates for cell therapy, drug screening, and developmental studies. It is known that iPS-CMs possess immature electrophysiological properties, but an exact characterization of their developmental stage and subtype differentiation is hampered by a lack of knowledge(More)
Induced pluripotent stem cell-derived cardiomyocytes (iPS-CMs) may be suitable for myocardial repair. While their functional and structural properties have been extensively investigated, their response to ischemia-like conditions has not yet been clearly defined. iPS-CMs were differentiated and enriched from murine induced pluripotent stem cells expressing(More)
We report here a transgenic murine induced pluripotent stem cell (iPSC) line expressing puromycin N-acetyltransferase (PAC) and enhanced green fluorescent protein (EGFP) under the control of α-myosin heavy chain promoter. This transgenic cell line reproducibly differentiates into EGFP-expressing cardiomyocytes (CMs) which can be generated at high purity(More)
  • 1