Learn More
In this paper we define Stirling numbers of the second kind by cardinality of certain functional classes so that S(n, k) = {f where f is function of n, k : f is onto increasing} After that we show basic properties of this number in order to prove recursive dependence of Stirling number of the second kind. Consecutive theorems are introduced to prove formula
The existing examples of natural deduction proofs, either declarative or procedural, indicate that often the legibility of proof scripts is of secondary importance to the authors. As soon as the computer accepts the proof script, many authors do not work on improving the parts that could be shortened and do not avoid repetitions of technical sub-deductions,(More)
In this paper I present selected properties of triangular matrices and basic properties of the rank of matrices over a field. I define a submatrix as a matrix formed by selecting certain rows and columns from a bigger matrix. That is in my considerations, as an array, it is cut down to those entries constrained by row and column. Then I introduce the(More)
In formal proof checking environments such as Mizar it is not merely the validity of mathematical formulas that is evaluated in the process of adoption to the body of accepted formalizations, but also the readability of the proofs that witness validity. As in case of computer programs, such proof scripts may sometimes be more and sometimes be less readable.(More)
In this paper we define a discrete subset family of a topological space and basis sigma locally finite and sigma discrete. First, we prove an auxiliary fact for discrete family and sigma locally finite and sigma discrete basis. We also show the necessary condition for the Nagata Smirnov theorem: every metrizable space is T3 and has a sigma locally finite(More)