Karol Kramkowski

Learn More
Although the use of angiotensin converting enzyme inhibitors (ACE-Is) in clinical practice brought the great chance to recognize the RAS role in the physiology and pathology, there are still many questions which we cannot answer. This article reviews actually known pathways of angiotensin II (Ang II) and other peptides of renin-angiotensin system (RAS)(More)
OBJECTIVE We compared the antithrombotic effects in vivo of 2 chemically different carbon monoxide-releasing molecules (CORM-A1 and CORM-3) on arterial and venous thrombus formation and on hemostatic parameters such as platelet activation, coagulation, and fibrinolysis. The hypotensive response to CORMs and their effects on whole blood gas analysis and(More)
The endothelial mechanism of ACE-Is action is multifaceted. On the one hand, by inhibiting ACE, ACE-Is diminish Ang II synthesis, one of the best known active peptides. On the other hand, they modify synthesis and release of PGI(2) and NO via increasing production of other biologically important peptides like bradykinin, Ang-(1-7) or Ang-(1-9). Thus, ACE-Is(More)
Carbon monoxide (CO) and CO-releasing molecules (CO-RMs) inhibit platelet aggregation in vitro. Herein, we compare the anti-platelet action of CORM-3, which releases CO rapidly (t ½ 1 min), and CORM-A1, which slowly releases CO (t½ = 21 min). The anti-platelet effects of NO donors with various kinetics of NO release were studied for comparison. The effects(More)
This study compared the antithrombotic effect of plasma angiotensin converting enzyme inhibitors (ACE-Is): captopril (CAP), enalapril (ENA) and tissue ACE-Is: perindopril (PER), quinapril (QUIN) in experimental venous and arterial thrombosis. Normotensive Wistar rats were treated p.o. with CAP (75 mg/kg), ENA (20 mg/kg), PER (2 mg/kg) and QUIN (3 mg/kg) for(More)
Angiotensin (Ang) (1-9) is the renin-angiotensin-system peptide found in the plasma of healthy volunteers and after angiotensin-converting-enzyme inhibitors therapy. In vitro experiments proved that Ang-(1-9) may be produced from Ang I. In our study, we tried to expand the poor data about the in vivo properties of Ang-(1-9). We revealed that Ang-(1-9)(More)
There are few findings indicating that nicotinamide may potentially influence intravascular thrombosis. Interestingly, N-methylnicotinamide, one of the metabolites of nicotinamide - could be more potent than its parent compound. In the present study we have investigated the influence of N-methylnicotinamide on arterial thrombosis in normotensive and(More)
The main goal of this study was to find specific plasma spectral markers associated with pulmonary arterial hypertension (PAH) induced by monocrotaline injection in rats. FTIR was used to monitor biochemical changes in plasma caused by PAH as compared with the systemic hypertension induced by partial ligation on the left artery and with the control group.(More)
C arbon monoxide (CO) is physiologically present in the human body, and its level is regulated through the enzymatic degradation of heme by heme oxygenase enzymes (HO-1 and HO-2). 1 Despite being renown as the silent killer, experimental data have revealed certain unexpected benefits of small doses of CO gas in the cardiovascular system, primarily(More)