Learn More
Very low birth weight preterm (PT) children are at high risk for brain injury. Employing diffusion tensor imaging (DTI), we tested the hypothesis that PT adolescents would demonstrate microstructural white matter disorganization relative to term controls at 16 years of age. Forty-four PT subjects (600-1250 g birth weight) without neonatal brain injury and(More)
Converging data suggest recovery from injury in the preterm brain. We used functional magnetic resonance imaging (fMRI) to test the hypothesis that cerebral connectivity involving Wernicke's area and other important cortical language regions would differ between preterm (PT) and term (T) control school age children during performance of an auditory language(More)
Recent data suggest recovery of language systems but persistent structural abnormalities in the prematurely born. We tested the hypothesis that subjects who were born prematurely develop alternative networks for processing language. Subjects who were born prematurely (n = 22; 600-1250 g birth weight), without neonatal brain injury on neonatal cranial(More)
Prematurely born children are at increased risk for language deficits at school age and beyond, but the neurobiological basis of these findings remains poorly understood. Thirty-one PT adolescents (600-1250g birth weight) and 36 T controls were evaluated using an fMRI passive language task and neurodevelopmental assessments including: the Wechsler(More)
OBJECTIVES To use functional magnetic resonance imaging (fMRI) to test the hypothesis that subjects who were born prematurely develop alternative systems for processing language. STUDY DESIGN Subjects who were born prematurely (n = 14; 600-1250 g birthweight) without neonatal brain injury and 10 matched term control subjects were examined with a fMRI(More)
Preterm birth is frequently associated with both neuropathologic and cognitive sequelae. This study examined cortical lobe, subcortical, and lateral ventricle development in association with perinatal variables and cognitive outcome. High-resolution volumetric magnetic resonance imaging scans were acquired and quantified using advanced image processing(More)
OBJECTIVE Although preterm very low birth weight infants have a high prevalence of neuroanatomical abnormalities when evaluated at term-equivalent age, patterns of brain growth in prematurely born infants during school age and adolescence remain largely unknown. Our goal was to test the hypothesis that preterm birth results in long-term dynamic changes in(More)
Preterm birth often results in significant learning disability, and previous magnetic resonance imaging (MRI) studies of preterm children have demonstrated reduction in overall cortical tissue with particular vulnerability in the temporal lobe. We measured cortical gyrification in 73 preterm and 33 term control children at 8 years of age and correlated(More)
We investigate sex-associated effects of preterm birth on cerebral gray matter (GM) and white matter (WM) volumes. Preterm children (n=65) and 31 healthy, term control children had usable magnetic resonance imaging (MRI) data acquired at 8 years of age. Both GM and WM volumes were significantly reduced in the preterm group compared with controls. However,(More)
OBJECTIVE Abnormalities in brain structure, cognition, and behavior have been described in children born prematurely. However, no direct in vivo evidence has yet demonstrated abnormal neural processing in these children. Our aim was to compare brain activity associated with phonologic and semantic processing of language between term and preterm children(More)