Learn More
The ATP-binding cassette (ABC) transporter ABCB6 is a mitochondrial porphyrin transporter that activates porphyrin biosynthesis. ABCB6 lacks a canonical mitochondrial targeting sequence but reportedly traffics to other cellular compartments such as the plasma membrane. How ABCB6 reaches these destinations is unknown. In this study, we show that endogenous(More)
Stem cells possess the dual properties of self-renewal and pluripotency. Self-renewal affords these populations the luxury of self-propagation, whereas pluripotency allows them to produce the multitude of cell types found in the body. Protection of the stem cell population from damage or death is critical because these cells need to remain intact throughout(More)
ATP-dependent drug transport by human P-glycoprotein (Pgp, ABCB1) involves a coordinated communication between its drug-binding site (substrate site) and the nucleotide binding/hydrolysis domain (ATP sites). It has been demonstrated that the two ATP sites of Pgp play distinct roles within a single catalytic turnover; whereas ATP binding or/and hydrolysis by(More)
The ATP binding cassette (ABC) proteins are typically ATP-driven transmembrane pumps that have been evolutionarily conserved from bacteria to humans. In humans these transporters are subdivided into seven subfamilies, ranging from A to G. The ABCG subfamily of transporters is the primary focus of this review. This subfamily of proteins has been conserved(More)
The human P-glycoprotein (Pgp, ABCB1) is an ATP-dependent efflux pump for structurally unrelated hydrophobic compounds, conferring simultaneous resistance to and restricting bioavailability of several anticancer and antimicrobial agents. Drug transport by Pgp requires a coordinated communication between its substrate binding/translocating pathway (substrate(More)
BACKGROUND ABCB5 is a member of the ABC protein superfamily, which includes the transporters ABCB1, ABCC1 and ABCG2 responsible for causing drug resistance in cancer patients and also several other transporters that have been linked to human disease. The ABCB5 full transporter (ABCB5.ts) is expressed in human testis and its functional significance is(More)
The principle mechanism of protection of stem cells is through the expression of ATP-binding cassette (ABC) transporters. These transporters serve as the guardians of the stem cell population in the body. Unfortunately these very same ABC efflux pumps afford protection to cancer stem cells in tumors, shielding them from the adverse effects of chemotherapy.(More)
In order to develop targeted strategies for combating drug resistance it is essential to understand it's basic molecular mechanisms. In an exploratory study we have found several possible indicators of etoposide resistance operating in MCF7VP cells, including up-regulation of ABC transporter genes, modulation of miRNA, and alteration in copy numbers of(More)
The ATP-binding cassette (ABC) transporter genes represent the largest family of transporters and these genes are abundant in the genome of all vertebrates. Through analysis of the genome sequence databases we have characterized the full complement of ABC genes from several mammals and other vertebrates. Multiple gene duplication and deletion events were(More)
The ATP-binding cassette (ABC) transporter genes are ubiquitous in the genomes of all vertebrates. Some of these transporters play a key role in xenobiotic defense and are endowed with the capacity to efflux harmful toxic substances. A major role in the evolution of the vertebrate ABC genes is played by gene duplication. Multiple gene duplication and(More)