Karl Unterrainer

Learn More
There is an increasing interest in using graphene (1, 2) for optoelectronic applications. (3-19) However, because graphene is an inherently weak optical absorber (only ≈2.3% absorption), novel concepts need to be developed to increase the absorption and take full advantage of its unique optical properties. We demonstrate that by monolithically integrating(More)
Graphene-based photodetectors are promising new devices for high-speed optoelectronic applications. However, despite recent efforts it is not clear what determines the ultimate speed limit of these devices. Here, we present measurements of the intrinsic response time of metal-graphene-metal photodetectors with monolayer graphene using an optical correlation(More)
The terahertz (THz) spectral region, covering frequencies from 1 to 10 THz, is highly interesting for chemical sensing. The energy of rotational and vibrational transitions of molecules lies within this frequency range. Therefore, chemical fingerprints can be derived, allowing for a simple detection scheme. Here, we present an optical sensor based on active(More)
  • 1