Karl Unterrainer

Learn More
There is an increasing interest in using graphene (1, 2) for optoelectronic applications. (3-19) However, because graphene is an inherently weak optical absorber (only ≈2.3% absorption), novel concepts need to be developed to increase the absorption and take full advantage of its unique optical properties. We demonstrate that by monolithically integrating(More)
Graphene-based photodetectors are promising new devices for high-speed optoelectronic applications. However, despite recent efforts it is not clear what determines the ultimate speed limit of these devices. Here, we present measurements of the intrinsic response time of metal-graphene-metal photodetectors with monolayer graphene using an optical correlation(More)
Solid state terahertz (THz) lasers were made possible through the rapid progress in quantum cascade lasers (QCLs) [1]. Despite the advances in mid-infrared (MIR) QCLs [2], THz QCLs remain difficult to fabricate. The tolerances in alloy composition, layer thickness, and doping are lower for THz QCLs than their MIR counterparts. Typical THz structures can(More)
We present the design and the realization of active photonic crystal (PhC) semiconductor lasers. The PhC consists of semiconductor nanostructure pillars which provide gain at a quantized transition energy. The vertical layer sequence is that of a terahertz quantum cascade laser. Thereby, the artificial crystal itself provides the optical gain and the(More)
When two resonant modes in a system with gain or loss coalesce in both their resonance position and their width, a so-called exceptional point occurs, which acts as a source of non-trivial physics in a diverse range of systems. Lasers provide a natural setting to study such non-Hermitian degeneracies, as they feature resonant modes and a gain material as(More)
We demonstrate bio-medical imaging using a Terahertz quantum cascade laser. This new optoelectronic source of coherent Terahertz radiation allows building a compact imaging system with a large dynamic range and high spatial resolution. We obtain images of a rat brain section at 3.4 THz. Distinct regions of brain tissue rich in fat, proteins, and(More)
Lasers are usually described by their output frequency and intensity. However, laser operation is an inherently nonlinear process. Knowledge about the dynamic behaviour of lasers is thus of great importance for detailed understanding of laser operation and for improvement in performance for applications. Of particular interest is the time domain within the(More)
We have studied terahertz ~THz! emission from InAs and GaAs in a magnetic field, and find that the emitted radiation is produced by coupled cyclotron-plasma charge oscillations. Ultrashort pulses of THz radiation were produced at semiconductor surfaces by photoexcitation with a femtosecond Ti-sapphire laser. We recorded the integrated THz power and the THz(More)
We report on THz emission from plasma oscillations in semiconductors excited by femtosecond optical pulses. Time-resolved correlation measurements are performed on p-i-n and n-doped GaAs structures. In p-i-n structures coherent oscillations of the hot photogenerated carrier plasma emit THz radiation. A fundamentally new emission process is proposed in(More)
Time-resolved transmission spectroscopy of a mid-infrared quantum cascade laser emitting at 11.7 mum allows us to iteratively retrieve the effective refractive index and the extinction coefficient of the gain medium in a broad spectral range with an accuracy of +/-7x10(-3). Besides a 3% slowdown of the group velocity we find a large induced group-velocity(More)