Karl-Peter Marzlin

  • Citations Per Year
Learn More
We analyze and demonstrate the feasibility and superiority of linear optical single-qubit fingerprinting over its classical counterpart. For one-qubit fingerprinting of two-bit messages, we prepare "tetrahedral" qubit states experimentally and show that they meet the requirements for quantum fingerprinting to exceed the classical capability. We prove that(More)
We propose a scheme to generate double electromagnetically induced transparency and optimal cross-phase modulation for two slow, copropagating pulses with matched group velocities in a single species of atom, namely 87Rb. A single pump laser is employed and a homogeneous magnetic field is utilized to avoid cancellation effects through the nonlinear Zeeman(More)
The adiabatic theorem states that an initial eigenstate of a slowly varying Hamiltonian remains close to an instantaneous eigenstate of the Hamiltonian at a later time. We show that a perfunctory application of this statement is problematic if the change in eigenstate is significant, regardless of how closely the evolution satisfies the requirements of the(More)
We present a new theoretical method to study a trapped gas of bosonic two-level atoms interacting with a single mode of a microwave cavity. This interaction is described by a trilinear Hamiltonian which is formally completely equivalent to the one describing parametric down-conversion in quantum optics. A system of differential equations describing the(More)
Fermi coordinates (FC) are supposed to be the natural extension of Cartesian coordinates for an arbitrary moving observer in curved space-time. Since their construction cannot be done on the whole space and even not in the whole past of the observer we examine which construction principles are responsible for this effect and how they may be modified. One(More)
We analyze the dynamical stability of gap solitons formed in a quasi-one-dimensional Bose-Einstein condensate in an optical lattice. Using two different numerical methods we show that, under realistic assumptions for experimental parameters, a gap soliton is stable only in a truly one-dimensional situation. In two and three dimensions, resonant transverse(More)
We investigate an atomic three-level Λ-system which is exposed to two counterpropagating laser fields (inducing Raman transitions) and which is closed by a magnetic hyperfine field tuned to be in resonance with the transition between the two ground states. The influence of a homogeneous gravitational field is included in a full quantum treatment of the(More)