#### Filter Results:

#### Publication Year

1994

2008

#### Publication Type

#### Co-author

#### Publication Venue

#### Key Phrases

Learn More

The general construction of extended reference frames for non-inertial observers in flat space is studied. It is shown that, if the observer moves inertially before and after an arbitrary acceleration and rotation, the region where reference frames can coincide with an inertial system is bounded for final velocities exceeding 0.6 c.

- Rolf T Horn, S A Babichev, Karl-Peter Marzlin, A I Lvovsky, Barry C Sanders
- Physical review letters
- 2005

We analyze and demonstrate the feasibility and superiority of linear optical single-qubit fingerprinting over its classical counterpart. For one-qubit fingerprinting of two-bit messages, we prepare "tetrahedral" qubit states experimentally and show that they meet the requirements for quantum fingerprinting to exceed the classical capability. We prove that… (More)

We derive the Fermi coordinate system of an observer in arbitrary motion in an arbitrary weak gravitational field valid to all orders in the geodesic distance from the worldline of the observer. In flat space-time this leads to a generalization of Rindler space for arbitrary acceleration and rotation. The general approach is applied to the special case of… (More)

Fermi coordinates (FC) are supposed to be the natural extension of Cartesian coordinates for an arbitrary moving observer in curved space-time. Since their construction cannot be done on the whole space and even not in the whole past of the observer we examine which construction principles are responsible for this effect and how they may be modified. One… (More)

The dipole coupling term between a system of N particles with total charge zero and the electromagnetic field is derived in the presence of a weak gravitational field. It is shown that the form of the coupling remains the same as in flat space-time if it is written with respect to the proper time of the observer and to the measurable field components. Some… (More)

- Michael S Underwood, Karl-Peter Marzlin
- 2008

We generalize Fermi coordinates, which correspond to an adapted set of coordinates describing the vicinity of an observer's worldline, to the worldsheet of an arbitrary spatial curve in a static spacetime. The spatial coordinate axes are fixed using a covariant Frenet triad so that the metric can be expressed using the curvature and torsion of the spatial… (More)

- ‹
- 1
- ›