Learn More
To clarify the key role of Rad50 in DNA double-strand break repair (DSBR), we biochemically and structurally characterized ATP-bound and ATP-free Rad50 catalytic domain (Rad50cd) from Pyrococcus furiosus. Rad50cd displays ATPase activity plus ATP-controlled dimerization and DNA binding activities. Rad50cd crystal structures identify probable protein and DNA(More)
To reveal the mechanism of processive strand separation by superfamily-2 (SF2) 3'-->5' helicases, we determined apo and DNA-bound crystal structures of archaeal Hel308, a helicase that unwinds lagging strands and is related to human DNA polymerase theta. Our structure captures the duplex-unwinding reaction, shows that initial strand separation does not(More)
Detection of cytoplasmic DNA represents one of the most fundamental mechanisms of the innate immune system to sense the presence of microbial pathogens. Moreover, erroneous detection of endogenous DNA by the same sensing mechanisms has an important pathophysiological role in certain sterile inflammatory conditions. The endoplasmic-reticulum-resident protein(More)
Protein conformation is critically linked to function and often controlled by interactions with regulatory factors. Here we report the selection of camelid-derived single-domain antibodies (nanobodies) that modulate the conformation and spectral properties of the green fluorescent protein (GFP). One nanobody could reversibly reduce GFP fluorescence by a(More)
The ATPase RIG-I senses viral RNAs that contain 5'-triphosphates in the cytoplasm. It initiates a signaling cascade that activates innate immune response by interferon and cytokine production, providing essential antiviral protection for the host. The mode of RNA 5'-triphosphate sensing by RIG-I remains elusive. We show that the C-terminal regulatory domain(More)
To clarify functions of the Mre11/Rad50 (MR) complex in DNA double-strand break repair, we report Pyrococcus furiosus Mre11 crystal structures, revealing a protein phosphatase-like, dimanganese binding domain capped by a unique domain controlling active site access. These structures unify Mre11's multiple nuclease activities in a single endo/exonuclease(More)
The Mre11 complex (Mre11 Rad50 Nbs1) is central to chromosomal maintenance and functions in homologous recombination, telomere maintenance and sister chromatid association. These functions all imply that the linked binding of two DNA substrates occurs, although the molecular basis for this process remains unknown. Here we present a 2.2 A crystal structure(More)
Cytosolic DNA arising from intracellular bacterial or viral infections is a powerful pathogen-associated molecular pattern (PAMP) that leads to innate immune host defence by the production of type I interferon and inflammatory cytokines. Recognition of cytosolic DNA by the recently discovered cyclic-GMP-AMP (cGAMP) synthase (cGAS) induces the production of(More)
Nuclear actin and actin-related proteins (Arps) are integral components of various chromatin-remodelling complexes. Actin in such nuclear assemblies does not form filaments but associates in defined complexes, for instance with Arp4 and Arp8 in the INO80 remodeller. To understand the relationship between nuclear actin and its associated Arps and to test the(More)
Two identical sister copies of eukaryotic chromosomes are synthesized during S phase. To facilitate their recognition as pairs for segregation in mitosis, sister chromatids are held together from their synthesis onward by the chromosomal cohesin complex. Replication fork progression is thought to be coupled to establishment of sister chromatid cohesion,(More)