Karl P. Nightingale

Learn More
The ATPase ISWI can be considered the catalytic core of several multiprotein nucleosome remodeling machines. Alone or in the context of nucleosome remodeling factor, the chromatin accessibility complex (CHRAC), or ACF, ISWI catalyzes a number of ATP-dependent transitions of chromatin structure that are currently best explained by its ability to induce(More)
The high mobility group proteins 1 and 2 (HMG1/2) and histone B4 are major components of chromatin within the nuclei assembled during the incubation of Xenopus sperm chromatin in Xenopus egg extract. To investigate their potential structural and functional roles, we have cloned and expressed Xenopus HMG1 and histone B4. Purified histone B4 and HMG1 form(More)
The ATPase ISWI is the catalytic core of several nucleosome remodeling complexes, which are able to alter histone-DNA interactions within nucleosomes such that the sliding of histone octamers on DNA is facilitated. Dynamic nucleosome repositioning may be involved in the assembly of chromatin with regularly spaced nucleosomes and accessible regulatory(More)
In contrast to its behavior as naked DNA, the MMTV promoter assembled in minichromosomes can be activated synergistically by the progesterone receptor and NF1 in a process involving ATP-dependent chromatin remodeling. The DNA-binding domain of NF1 is required and sufficient for stable occupancy of all receptor-binding sites and for functional synergism.(More)
The genetic code epitomises simplicity, near universality and absolute predictive power. By contrast, epigenetic information, in the form of histone modifications, is characterised by complexity, diversity and an overall tendency to respond to changes in genomic function rather than to predict them. Perhaps the transient changes in histone modifications(More)
Histones are subject to a wide variety of post-translational modifications that play a central role in gene activation and silencing. We have used histone modification-specific antibodies to demonstrate that two histone modifications involved in gene activation, histone H3 acetylation and H3 lysine 4 methylation, are functionally linked. This interaction,(More)
A number of activators are known to increase transcription by RNA polymerase (pol) II through protein acetylation. While the physiological substrates for those acetylases are poorly defined, possible targets include general transcription factors, activator proteins and histones. Using a cell-free system to reconstitute chromatin with increased histone(More)
ERK and p38 MAP kinases, acting through the downstream mitogen- and stress-activated kinase 1/2 (MSK1/2), elicit histone H3 phosphorylation on a subfraction of nucleosomes--including those at Fos and Jun--concomitant with gene induction. S10 and S28 on the H3 tail have both been shown to be phospho-acceptors in vivo. Both phospho-epitopes appear with(More)
Histone deacetylase inhibitors (HDACi) are increasingly used as therapeutic agents, but the mechanisms by which they alter cell behaviour remain unclear. Here we use microarray expression analysis to show that only a small proportion of genes (∼9%) have altered transcript levels after treating HL60 cells with different HDACi (valproic acid, Trichostatin A,(More)
Lecture recordings are increasingly used to supplement lecture attendance within higher education, but their impact on student learning remains unclear. Here we describe a study to evaluate student use of lecture recordings and quantify their impact on academic performance. Questionnaire responses and online monitoring of student’s access to recordings(More)