Learn More
The primary olfactory neuropil, the antennal lobe (AL) in insects, is organized in glomeruli. Glomerular activity patterns are believed to represent the across-fibre pattern of the olfactory code. These patterns depend on an organized innervation from the afferent receptor cells, and interconnections of local interneurons. It is unclear how the complex(More)
The molecular mechanisms controlling synaptogenesis in the central nervous system (CNS) are poorly understood. Previous reports showed that a glia-derived factor strongly promotes synapse development in cultures of purified CNS neurons. Here, we identify this factor as cholesterol complexed to apolipoprotein E-containing lipoproteins. CNS neurons produce(More)
1. To study the effects of glial cells on synapse formation, we established microcultures of purified rat retinal ganglion cells (RGCs) and monitored synapse (autapse) development in single neurones using electrophysiological recordings, FM1-43 labelling and immunocytochemistry. 2. Solitary neurones grew ramifying neurites, but formed only very few and(More)
There is increasing evidence that synapse function depends on interactions with glial cells, namely astrocytes. Studies on specific neurons of the central nervous system (CNS) indicated that glial signals also control synapse development, but it remained unclear whether this is a general principle that applies to other neuronal cell types. To address this(More)
The pluripotency and high proliferative capacity of embryonic stem (ES) cells (1-3) makes them an attractive source of different cell types for biomedical research and cell replacement therapies. A major prerequisite for these applications is the availability of a homogeneous population of the desired cell type. However, ES cell-derived material contains,(More)
Brain development and function relies on the exchange of signals between neurons and glial cells. Here we review a series of recent studies on cultures of purified retinal ganglion cells (RGCs) that point to a new role of glial cells in the formation and plasticity of synaptic connections. The results suggest that neurons must import glia-derived(More)
  • 1