Karl Kleinermanns

Learn More
In this article we reinvestigate the bimodal fluorescence of cytochrome c (Cyt c) by using excitation-wavelength-dependent fluorescence spectroscopy. We show that its major contributions at pH 3-7 do not arise from tryptophan (Trp-59) fluorescence as hitherto assumed. Instead, different chromophores of Cyt c contribute at different pH values. At pH 3-7, the(More)
The two intertwined strands of DNA are held together through base pairing--the formation of hydrogen bonds between bases located opposite each other on the two strands. DNA replication and transcription involve the breaking and re-forming of these hydrogen bonds, but it is difficult to probe these processes directly. For example, conventional DNA(More)
Guanosine monophosphate (GMP) in aqueous solutions has been studied with femtosecond broad-band transient absorption spectroscopy and by quantum-mechanical calculations. The sample was excited at 267 or 287 nm and probed between 270 and 1000 nm with 100 fs resolution, for various pH values between 2 and 7. At pH 2, when the guanine ring is ground-state(More)
The vibronic spectrum of the adenine-thymine (A-T) base pair was obtained by one-color resonant two-photon ionization (R2PI) spectroscopy in a free jet of thermally evaporated A and T under conditions favorable for formation of small clusters. The onset of the spectrum at 35,064 cm-1 exhibits a large red shift relative to the pi-pi* origin of 9H-adenine at(More)
To observe fundamental properties of DNA building blocks it is desirable to study individual nucleosides in the gas phase without interference from solvent molecules, or macromolecular structure. As a first step, we have recently reported the first vibronic spectrum of the nucleobase guanine, obtained by a combination of laser desorption, jet cooling, and(More)
Because of their biological importance the DNA bases have been the subject of many theoretical and experimental investigations. In the gas phase the intrinsic properties of the bases can be studied at vibrational or even rotational resolution without intermolecular interactions. Though small, these molecules are difficult to vaporize without extensive(More)
We present resonant two-photon ionization (R2PI), IR-UV, and UV-UV double resonance spectra of jet-cooled 2-aminopurine (2AP) as well as Fourier transform infrared (FTIR) gas phase spectra. 2AP is a fluorescing isomer of the nucleobase adenine. The results show that there is only one tautomer of 2AP which absorbs in the wavelength range 32,300-34,500(More)
Gold nanoparticles were surface modified with an ionizable and pH-sensitive monolayer of thiobarbituric acid (TBA). By variation of the pH value of the solution, nanoparticle aggregates can be produced in a controlled way. The aggregates thus prepared were irradiated with an intense pulsed laser at 532 nm. The products in solution were examined by(More)
The vibronic spectrum of tryptamine has been studied in a molecular beam up to an energy of 930 cm(-1) above the S(0)-S(1) electronic origin. Rotationally resolved electronic spectra reveal a rotation of the transition dipole moment direction from (1)L(b) to (1)L(a) beginning about 400 cm(-1) above the (1)L(b) origin. In this region, vibronic bands which(More)