Learn More
The internal transcribed spacer (ITS) region of the nuclear ribosomal repeat unit is the most popular locus for species identification and subgeneric phylogenetic inference in sequence-based mycological research. The region is known to show certain variability even within species, although its intraspecific variability is often held to be limited and(More)
A comprehensive phylogenetic classification of the kingdom Fungi is proposed, with reference to recent molecular phylogenetic analyses, and with input from diverse members of the fungal taxonomic community. The classification includes 195 taxa, down to the level of order, of which 16 are described or validated here: Dikarya subkingdom nov.; Chytridiomycota,(More)
The nuclear ribosomal internal transcribed spacer (ITS) region is the formal fungal barcode and in most cases the marker of choice for the exploration of fungal diversity in environmental samples. Two problems are particularly acute in the pursuit of satisfactory taxonomic assignment of newly generated ITS sequences: (i) the lack of an inclusive, reliable(More)
Fungi play major roles in ecosystem processes, but the determinants of fungal diversity and biogeographic patterns remain poorly understood. Using DNA metabarcoding data from hundreds of globally distributed soil samples, we demonstrate that fungal richness is decoupled from plant diversity. The plant-to-fungus richness ratio declines exponentially toward(More)
BACKGROUND DNA sequences are increasingly seen as one of the primary information sources for species identification in many organism groups. Such approaches, popularly known as barcoding, are underpinned by the assumption that the reference databases used for comparison are sufficiently complete and feature correctly and informatively annotated entries. (More)
DNA phylogenetic comparisons have shown that morphology-based species recognition often underestimates fungal diversity. Therefore, the need for accurate DNA sequence data, tied to both correct taxonomic names and clearly annotated specimen data, has never been greater. Furthermore, the growing number of molecular ecology and microbiome projects using(More)
The nuclear ribosomal internal transcribed spacer (ITS) region is the most commonly chosen genetic marker for the molecular identification of fungi in environmental sequencing and molecular ecology studies. Several analytical issues complicate such efforts, one of which is the formation of chimeric-artificially joined-DNA sequences during PCR amplification(More)
One new order, one new family, and one new combination are presented, as the result of molecular phylogenetic analyses. The new order Stereopsidales and the new family Stereopsidaceae are described incorporating Stereopsis radicans and S. globosa, formerly Clavulicium globosum. We show that not only do these species represent an old overlooked lineage, but(More)
BACKGROUND During the last few years, DNA sequence analysis has become one of the primary means of taxonomic identification of species, particularly so for species that are minute or otherwise lack distinct, readily obtainable morphological characters. Although the number of sequences available for comparison in public databases such as GenBank increases(More)