Learn More
BACKGROUND Increasing evidence implicates the critical roles of epigenetic regulation in cancer. Very recent reports indicate that global gene silencing in cancer is associated with specific epigenetic modifications. However, the relationship between epigenetic switches and more dynamic patterns of gene activation and repression has remained largely(More)
Cytokines act as chemical mediators during the inflammatory process. Measurements of cytokine levels in tissue have previously been performed in homogenized tissue, but the true concentrations in native interstitial fluid (ISF), i.e., the compartment where cytokines exert their biologically active role, have remained unknown. The role of skeletal muscle(More)
Tumor hypoxia is relevant for tumor growth, metabolism and epithelial-to-mesenchymal transition (EMT). We report that hyperbaric oxygen (HBO) treatment induced mesenchymal-to-epithelial transition (MET) in a dimethyl-alpha-benzantracene induced mammary rat adenocarcinoma model, and the MET was associated with extensive coordinated gene expression changes(More)
BACKGROUND Previously we reported extensive gene expression reprogramming during epithelial to mesenchymal transition (EMT) of primary prostate cells. Here we investigated the hypothesis that specific histone and DNA methylations are involved in coordination of gene expression during EMT. RESULTS Genome-wide profiling of histone methylations (H3K4me3 and(More)
BACKGROUND Epithelial to mesenchymal transition (EMT) has been connected with cancer progression in vivo and the generation of more aggressive cancer cell lines in vitro. EMT has been induced in prostate cancer cell lines, but has previously not been shown in primary prostate cells. The role of EMT in malignant transformation has not been clarified. (More)
Increased expression of lipocalin 2 (LCN2) has been observed in several cancers. The aim of the present study was to investigate LCN2 in endometrial cancer in relation to clinico-pathologic phenotype, angiogenesis, markers of epithelial-mesenchymal transition (EMT), and patient survival. Immunohistochemical staining was performed using a human LCN2 antibody(More)
Cancers arise through accumulating genetic and epigenetic alterations, considered relevant for phenotype and approaches to targeting new therapies. We investigated a unique collection of endometrial cancer precursor samples and clinically annotated primary and metastatic lesions for two evolutionary and functionally related transcription factors,(More)
The transcription factor p63 is central for epithelial homeostasis and development. In our model of epithelial to mesenchymal transition (EMT) in human prostate cells, p63 was one of the most down-regulated transcription factors during EMT. We therefore investigated the role of p63 in EMT. Over-expression of the predominant epithelial isoform ΔNp63α in(More)
BACKGROUND Despite being the most common pelvic gynecologic malignancy in industrialized countries, no targeted therapies are available for patients with metastatic endometrial carcinoma. In order to improve treatment, underlying molecular characteristics of primary and metastatic disease must be explored. METHODOLOGY/PRINCIPAL FINDINGS We utilized the(More)
UNLABELLED The angiogenic switch, a rate-limiting step in tumor progression, has already occurred by the time most human tumors are detectable. However, despite significant study of the mechanisms controlling this switch, the kinetics and reversibility of the process have not been explored. The stability of the angiogenic phenotype was examined using an(More)